
MiniM Database Server
Advanced Guide

Version 1.28
Eugene Karataev

mailto:support@minimdb.com
http://www.minimdb.com

April 3, 2017

2

Contents

1 Administration and Set-Up 7
1.1 MiniM service description . 7

1.1.1 Windows version . 7
1.1.2 Linux version . 9

1.2 File minim.ini description . 10
1.2.1 Server Section . 10
1.2.2 Telnet Section . 13
1.2.3 Process Section . 13
1.2.4 Journal Section . 16
1.2.5 Mnemonic Section . 17
1.2.6 Login Section . 17

1.3 File minimdb.ini description 19
1.4 File minimti.ini description . 21
1.5 Registry records made by installer 22
1.6 Backup and Restore . 24
1.7 Handling lack of disk space . 30
1.8 Telnet echo . 31
1.9 MiniM Collation Editor . 34
1.10 MiniM license key usage . 38

2 Devices 41
2.1 Development with TCP device 41
2.2 Development with CON device 47
2.3 ATR mnemonic . 50

3 Technical Articles 53
3.1 minim.exe command line switches 53
3.2 ZDLL module development . 56
3.3 ZDEVICE module development 65
3.4 User-defined z-functions . 73
3.5 User-defined z-commands . 74

3

4 CONTENTS

3.6 Processes accounts . 76
3.7 Routine Editor Keystrokes . 77
3.8 MiniM Server Connect . 79
3.9 MiniM Server Connect, ActiveX 85
3.10 Import / export API . 94

3.10.1 Global import . 94
3.10.2 Block global import . 95
3.10.3 Routine import . 96
3.10.4 Bytecode import . 96
3.10.5 Globals export . 97
3.10.6 Block global export . 98
3.10.7 Routine export . 99
3.10.8 Bytecode export . 100

3.11 Routine Change API . 100

4 CHUI Utilities 107
4.1 %BACKUP . 107
4.2 %DBCLEAN . 110
4.3 %DBCRC . 111
4.4 %DBSIZE . 112
4.5 %GBI . 114
4.6 %GBO . 115
4.7 %GDIR . 116
4.8 %GI . 117
4.9 %GL . 118
4.10 %GO . 118
4.11 %GS . 120
4.12 %JOBTAB . 120
4.13 %JOURNAL . 121
4.14 %LOCKTAB . 122
4.15 %PERFMON . 123
4.16 %RCHANGE . 124
4.17 %RCOMPIL . 126
4.18 %RCOPY . 127
4.19 %RDELETE . 128
4.20 %RDIR . 129
4.21 %RESTART . 130
4.22 %RESTORE . 131
4.23 %RFIND . 133
4.24 %RFIRST . 134
4.25 %RI . 135

CONTENTS 5

4.26 %RIMF . 137
4.27 %RL . 138
4.28 %RO . 138
4.29 %ROMF . 139
4.30 %RS . 140
4.31 %RSAIN . 141
4.32 %RSAOUT . 142
4.33 %SHUTDOWN . 144

5 Macro Preprocessor 145
5.1 Macro Routines . 145
5.2 #define . 146
5.3 Macro Comment . 148
5.4 #else . 149
5.5 #endif . 149
5.6 #execute . 150
5.7 #if . 151
5.8 #ifdef . 152
5.9 #ifndef . 152
5.10 #include . 153
5.11 #undef . 154
5.12 Macro functions . 155

6 MiniMono 159
6.1 MiniMono Architecture . 159
6.2 Data structures . 161
6.3 Direct calls . 164
6.4 Calls back . 165
6.5 Difference list . 166
6.6 MiniMono CHUI Tools . 167
6.7 MiniMono GUI Tools . 169
6.8 MiniMonoX . 170

6.8.1 MiniMono.VM properties 173
6.8.2 MiniMono.VM functions 176
6.8.3 MiniMono.VM events 188
6.8.4 MiniMono.ServerString properties 202
6.8.5 MiniMono.ServerString functions 202

7 MiniMono for Android 205
7.1 SDK Content . 205
7.2 Building Application . 207

6 CONTENTS

7.3 Assets Synchronisation Utility 210
7.4 Examples . 211

Chapter 1

Administration and Set-Up

1.1 MiniM service description

1.1.1 Windows version

MiniM service is a central part of MiniM Database Server, control selected
MiniM instance and all shared server objects. Service can be installed or
reinstalled without MiniM instance uninstalling.

Installation

Run mnmsvc.exe with key /install. Key is used case insensitive. On
installing can be displayed dialog window with message about successful in-
stallation. If this window does not required, nedd to add key /silent. This
key is used case sensitive too.

Service installing using

mnmsvc.exe /install /silent

is recommended for automatic installing using special installers. On installing
service application check key InstallName in section Server in configuration
file minim.ini. For correct configuretion of different MiniM instances need to
check different instances have different names.

Installation examples:

w:\MiniM\bin\mnmsvc.exe /install

w:\MiniM\bin\mnmsvc.exe /install /silent

7

8 CHAPTER 1. ADMINISTRATION AND SET-UP

Uninstallation

Run mnmsvc.exe with key /uninstall. Key is used case insensitive.
On deinstallation can be displayed dialog window with successful service
deinstallation. If this window does not required, nedd to add key /silent.
This key is used case sensitive too. If deinstallation check this service has
not been installed, this key is ignored and is dysplayed dialog window with
error message.

Uninstalling service with

mnmsvc.exe /uninstall /silent

is recommended for automatic uninstalling using special installers.

Uninstallation examples:

w:\MiniM\bin\mnmsvc.exe /uninstall

w:\MiniM\bin\mnmsvc.exe /uninstall /silent

Service working

After installing service by default still working under special Windows
account LocalSystem and runs manually. If need to run service automatically
on computer start, it is required change settings in the Services applet in the
Control Panel for service with name ”MiniM Service for INSTALLNAME”
where INSTALLNAME is a selected MiniM instance name. Change settings
for this service to be run automatically.

MiniM allow to use several instances ont the same computer and with
different versions. For correct configuration all MiniM instances must have
different telnet ports in the configuration files minim.ini.

Start and stop service from command line.

To start service from command line use internal Windows command net
with key start:

net start "MiniM Service for MINIM00",

where MINIM00 is a MiniM instance name.

To stop service from command line use internal Windows command net
with key stop:

net stop "MiniM Service for MINIM00"

This commands must start and stop appropriate services. If this instal-
lations have run any processes, this processes will terminates.

Examples how to start and stop MiniM service:

1.1. MINIM SERVICE DESCRIPTION 9

W:\MiniM\bin>net start "MiniM Service for MINIM00"

W:\MiniM\bin>net stop "MiniM Service for MINIM00"

Messages appeared on the screen are depended on Windows version and
localization used.

To check MiniM service is run administrator can see Windows Service
Manager or have to run MiniM Service Control utility minimti.exe which
show server is run as a system tray icon.

1.1.2 Linux version

MiniM Installer and Uninstaller are made as a single executable file and one
is use to install or uninstall (or upgrade available MiniM instance). This
thow modea are differs by one parameter -u. Installer works as a pure CHUI
application ffrom the command line and use only simple character input, so
can be used from the local computer or can be run remotely.

MiniM Database Server architecture allow to install and run on one com-
puter several MiniM instances and with different versions too. This MiniM
instances work independently from each other.

Installation

Make installer file executable:

chmod +x setupminim...

Names of installer can differs from each other in depends of version and
target processor.

Run installer

sudo ./setupminim...

Uninstallation

Make installer file executable and use the same version of installer as such
as version of MiniM need to be uninstalled:

chmod +x setupminim...

Name of installer can differs from each other in depends of version and
target processor.

Run uninstaller with the -u option:

10 CHAPTER 1. ADMINISTRATION AND SET-UP

sudo ./setupminim... -u

If current user does not have enought rights, installer outputs the message
about this.

Start and stop server from command line.

To start, stop or restart MiniM Database Server daemon need to be used
appropriate shell scripts in the /bin directory of the MiniM installation:

start.sh

stop.sh

restart.sh

If MiniM will have any version-dependent changes, this changes must be
located in this scripts.

If it is need, administrator must include start of the MiniM server into
the OS start sequence in depends of OS version, using the script

start.sh

All internal logging MiniM server do in the /bin subdirectory, file minim.log.

1.2 File minim.ini description

1.2.1 Server Section

Key InstallName - MiniM instance name. Each MiniM Database Server
installation on the one computer must have unique name. It is recommended
to use names derived from MINIM and use English letters and digits. This
name is used by MiniM service mnmsvc.exe and to create different shared
objects to run several MiniM instances at the same time. Installation name
must be up to 31 characters length. If it is specified more than 31 charac-
ters, only first 31 characters will be used. If instance name contains other
character than English letter or digit, this character will be replaced to the
”M” character. Example:

InstallName = MINIM00

Key LogFileName - name or full name of file for server logging. Value by
default - minim.log and placed in the /bin subdirectory of MiniM installation.
If file name specified is invalid file name, server use default value. Log file

1.2. FILE MINIM.INI DESCRIPTION 11

can be deleted, copied without server and data fault. This file contains
reglamented records about server start and stop and error messages. This
records are not required for server normal work, but can be useful to solve
problems occured. Key name is used case insensitive. Example:

LogFileName = w:/minim/bin/minim.log

Key LogFileChunk - log file chunk in bytes.

If minim.log file size need to be greater than log file chunk, MiniM rename
file minim.log to minim.log.bak, minim.log file truncates to zero and next
records add to the minim.log file. On this log file swithch procedure MiniM
makes record about log file switching. Key name is used case insensitive.

If before log file switch file minim.log.bak exists, this file is removed. And
in normal server working log file does not exceed two log file chunks by size.
If MiniM administrator want to see log records by long time, this key value
must can be increased. Example:

LogFileChunk = 100000

Key BIJFileName - name or full name of before image journaling file.
This file is used by write daemon to write pages been changed before write
to datafiles. This procedure prevents datafile from corrupting from hardware
failure. This file is used by server start procedure to apply changes been made
but not wrote to datafiles. Key name is used case insensitive. Example:

BIJFileName = w:/minim/bin/minim.bij

Key ProcessLimit - how much processes can work cuncurrently. If this
value is not specified, server use value by default 2000. Value of this key
does not affect to license limit and can be much more. Total process usage
see in License key usage topic. MiniM administrator can manually decrease
internal server allocations if use test license key with big capacity to test real
application requirements. Example:

ProcessLimit = 1000

Key Locale - locale name is used by current MiniM instance. This is
file nmae without extension of collation definition file name. This file is in
the /nat subdirectory of MiniM installation and must have extension ”.N”.
This collation definition is used by server for key comparisions, for upper and
lower case characters. Example:

12 CHAPTER 1. ADMINISTRATION AND SET-UP

Locale = RUS

MiniMono difference

MiniM Embedded Edition uses locale file name specified by the host pro-
cess and file can be located in any directory.

Key LockAreaSize - count of memory in megabytes for locking table.
This table is allocated once on server start. To change locking area server
restart is required. Size of locking area can be determined by experiment.
Minimal value is 1 Mb, maximum - 64 Mb. If application requires more than
64 Mb locking area it requires special MiniM build. This limits are intended
to prevent unstable server state. If server requires big locking area, admin-
istrator must increase system swap and be sure that real phisical memory is
enough to prevent swapping caused by frequent operations. Example:

LockAreaSize = 8

MiniM x64 difference

MiniM Database Server with x64 architecture does not use top limit for
this value, administrator can set tens of gigabytes if need.

Key AutoStartScript name of file with MUMPS commands required
execute on server start. If this key is specified, MiniM after full start executes
commands from this file line-by-line. Commands are executed as entered
manually by operator and before each line execution principal device makes
a current device. This file is not routine, only lines of code. For example, if
autostart.m file contains lines:

zn "user"

s ^TRACE($I(^TRACE))="start at "_$h

and if specified in key:

AutoStartScript = autostart.m

after start MiniM executes this lines as lines of MUMPS commands. This
file cannot use dot syntax, but can call available compiled subroutines. File
name cannot contain whitespace characters.

1.2. FILE MINIM.INI DESCRIPTION 13

1.2.2 Telnet Section

Key Start specify need (value 1) or not (value 0) start internal telnet server
on MiniM start procedure. If this key is absent or have any other value,
internal telnet server does not starts. Example:

Start = 1

Key Port specify TCP/IP port number to use by internal telnet server.
Can be used any value allowed for TCP/IP port. By default telnet servers
and clients use port 23. MiniM administrator must check this port does
not used by other software and different MiniM instances use different port
numbers. If this key does not specified or is not valid TCP/IP port, MiniM
does not start internal telnet server. Example:

Port = 2323

1.2.3 Process Section

Key DeviceTableSize specify the number of devices can be opened by one
process in one time. This limit does not affect any license limit, it is only
limit from uncontrolled devices opening by process on error and to prevent
unneed memory usage. Increasing of this key does not have big memory
wasting. Recommended value can be two of really used by one process.
Minimal value is 4. If key contains not a number or less than 4, used 4 by
default. Example:

DeviceTableSize = 8

Key DeviceNameSize specify maximum length of device name can be
used. To select real length limit administrator must check device names can
be used by process. Really big length can requires devices to run external
processes with command line options. Ordinary, value of 1024 is enough. If
process use device name with length exceeded this limit, this device will be
created and properly function, but the use command can have unpredictable
result to select device from devices available. It is not recommended make
device length not enough. Exmaple:

DeviceNameSize = 1024

14 CHAPTER 1. ADMINISTRATION AND SET-UP

Key Storage specify number of megabytes to use by process local vari-
ables. Minimal value is 1 Mb, maximum value is 64 Mb. If value exceed this
limits, server select minimal or maximum values. This memory is allocated
by each process and administrator must be sure real computer memory is
enough. Example:

Storage = 8

Key RoutineCache specify number of megabytes for bytecode cache.
Minimal value is 1 Mb, maximum is 64 Mb. If specified value exceeds this
limits, server select one of appropriate limit. This memory is allocated once
per server. Example:

RoutineCache = 8

Key ReadLineRecallCount specify how much lines of code can be
stored in internal line editor for reuse by up and down arrows keys for TNT
and CON devices. Minimal value is 10, maximum value is 128. This memory
is allocated only once and only for specified devices. Example:

ReadLineRecallCount = 10

Key ReadLineRecallBuffer specify how much bytes need to be used
to store for reuse by up and down arrows keys for TNT and CON devices.
Minimal value is 80, maximum value is 2048. This memory is allocated only
once and only for specified devices. Example:

ReadLineRecallBuffer = 1024

Key FrameCount specify number of stack frames limit per process. This
memory is allocated once at process start and cannot be changed dynami-
cally. For each function or subroutine call or for xecute command process use
one stack frame to save new-ed local variables and other stacked system vari-
ables. Minimal value is 16, maximum value is 131072. It is recommended to
check real application frame count requirements and use plus several frames.
Example:

FrameCount = 1024

1.2. FILE MINIM.INI DESCRIPTION 15

Key Namespace specify database name by default to switch to on new
process start. This database name is used by console, standard and tel-
net processes, and by internal service-run processes. If this database name
does not specified, server select one of the following and in order: USER,
%SYS. Databases are defined in the database configuration file minimdb.ini.
Database name and key name are used case insensitive. Example:

Namespace = MAPSALES

Key DBCacheSize specify in bytes how much memory must be used for
database pages cache on this server. This memory allocates once and is used
by all database processes. Minimal value is 1 megabyte (1048576), maximum
1 gigabyte (1073741824). Example:

DBCacheSize = 104857600

Here server use for pages cache 100 megabytes. Note, that 1 kilobyte is
1024 bytes, 1 megabyte is 1048576 bytes and 1 gigabyte is 1073741824 bytes.

Pages cache is used for all databases of this server configuration.

MiniM x64 difference

MiniM Database Server with x64 architecture does not use top limit for
this value, administrator can set tens of gigabytes if need.

Key NullSubscripts specify is null subscripts allowed on the server or
not. If value is 0 - null subscripts does not allowed, and if 1 - null subscripts
can be used. By default null subscripts does not allowed. If globals was
created with null null subscripts, this data can fault on import in server where
null subscripts does not allowed. By default MUMPS systems in generally
does not allow null subscripts. Example:

NullSubscripts = 0

This setting is used for all existing and newly created local and global
variables. Key name is used case insensitive.

Key TrapOnEof specify what must to do process if end of file occured
on reading from device, for example id device is a disk file. If this value is
0, process does not generate an error <ENDOFFILE> and sets system vari-
able $zeof to value 1. Otherwise process generate an error <ENDOFFILE>.
Value by default - 1. Example:

16 CHAPTER 1. ADMINISTRATION AND SET-UP

TrapOnEof = 1

Key OnHalt specify process action on terminate procedure related to
current transaction context: rollback current transaction, commin current
transaction or does nothing.

Table of supported values:

Commit Commit transactions on each level
Rollback Rollback entire transaction
other Nothing to do with transaction context

Values are used case insensitive. If nothing been specified, process does
nothing with current transaction context and all changes made are stored in
database. This is behavior by default.

To choose value administrator must consider, in common case, if process
will be terminates unexpectedly, server automatically run process guardian
and guardian does not use this setting and roll back process transaction
context and clears all locks created by failed process.

1.2.4 Journal Section

Key JournalDir specify subdirectory where server place journal files. Value
by default is journal, this subdirectory is automatically created by installer.
This disk must have enough space to store journal and administrator must
check is disk space available to complete database operations. This key name
is used case insensitive. Example:

JournalDir = w:/minim/journal

Key JournalFileLimit specify the limit of one journal file to grows be-
fore automatic switch to next journal file. Value is specified in megabytes.
Minimal value is 1, maximum value is 1024. If value was not specified, server
select maximum value, 1024 megabytes. Example:

JournalFileLimit = 200

Key JournalCache specify internal server cache size for journal records
queue. Size is specified in megabytes. Value by default 8, minimal 1, max-
imum 64 megabytes. Key name is used case insensitive. This memory allo-
cates by server only once and used by all processes. Example:

1.2. FILE MINIM.INI DESCRIPTION 17

JournalCache = 8

MiniM x64 difference

MiniM Database Server with x64 architecture does not use top limit for
this value, administrator can set tens of gigabytes if need.

Key TransactLevelLimit specify maximum allowed transaction level.
Minimal value is 1, maximum value is 32000. If value was not specified,
sever use by default value 255. Example:

TransactLevelLimit = 255

1.2.5 Mnemonic Section

This section describes automatic mnemonic routines assignment for devices.

Key CON specify routine name to be an initial mnemonic routine for the
CON devices of the server. If this value is not specified or is an empty string,
server does not assign mnemonic routine for CON device automatically. This
routine existence does not required to be assigned but is required in compiled
form if any process will use mnemonics. Example:

CON = %CONX364

Key TNT specify routine name to be an initial mnemonic routine for
the TNT (telnet) devices of the server. If this value is not specified or is
an empty string, server does not assign mnemonic routine for TNT device
automatically. This routine existence does not required to be assigned but
is required in compiled form if any process will use mnemonics. Example:

TNT = %TNTX364

1.2.6 Login Section

Section Login specify need or not to run special mumps code on process run.
This settings are applied to processes with potential user interaction: telnet
processes, console or GUI connections. If nothing been specified, process
starts work without execution any startup code. If was specified MUMPS
commands, this commands executes before process goes to normal interac-
tive state. To refuse user connection this code requires to execute the halt
command. Before execution process goes to database specified in the section
Process, Key Namespace.

18 CHAPTER 1. ADMINISTRATION AND SET-UP

Key TNT specify what commands must be executed first in telnet pro-
cess.

Key CON specify what commands must be executed first in console
process.

Examples:

[Login]

TNT = d login^%login()

CON = d login^%login()

This MUMPS commands can execute, for example, user login and pass-
word query, check user computernmae, change current database or to run
assigned to this used command. If commands returns control without halt
command execution. process stay in normal interactive state and wait user
input after prompt.

Key GUI specify expression need to be evaluated to check user access
rights. If this value is not specified or is an empty string, GUI applicaitons
(MiniM Control Center, MiniM Global Editor and MiniM Routine Editor)
does not query user login and password and continue to work.

If this value is not an empty string, this value is used as a MUMPS
expression need to evaluate as an integer. If result is 0, GUI tools suppose
connection failed, otherwise continue to work. Before execution code process
switches to database specified in connection option and login and password
are stored in special local variables with reserved names (%username and
%password). After expression evaluation local variable %password removes.
MiniM Database Server installer installs as example routine %logon which
can be used to check user logins. It is not recommended to change routine
%logon, because this routine can be changed by installer in next MiniM
versions. Example how to use GUI key:

[Login]

GUI = $$VALID^%logon(%username,%password)

If this expression evaluates as 0, GUI utilities show message about login
unsuccessful. If user not try other password, utilities exits. If expression
evaluates as nonzero value, GUI utilities continue to work.

MiniM administrator can combine ini keys and routines to specify need
login politics for users in compliance with application logins and check pass-
word check algorithms.

1.3. FILE MINIMDB.INI DESCRIPTION 19

Values of the TNT, CON and GUI keys after installation are an empty
strings and processes and GUI utilities does not ask user login and password.
Installer on installing MiniM version over existing does not change this values.
Values of this keys are read by depend of process logins and can be changed
and affected without server restart.

1.3 File minimdb.ini description

Configuration file minimdb.ini store current database configuration. This is
file of INI file format. Section names are database names case insensitive.
For example, sections [app] and [doc] declare two databases APP and DOC.
All databases must have valid names, first character must be English letter
or percent (%) character with followed English letters or digits. Database
name can be up to 31 characters in total.

MiniM Database Server implements internal builtin globals and routines
mapping between databases. Routines with names starts with percent (%)
and globals with names starts with percent phisically are stored in the %SYS
database and are visible from any database. Globals with names starts with
mtemp phisically are stored in the TEMP database and are visible from
any database. This rules are mandatory and MiniM Database Server re-
quires that databases with names %SYS and TEMP always be configured
and mounted.

Each database section contains special key to specify database parame-
ter. If MiniM detects unknown key in minimdb.ini, it generates appropriate
diagnostic record in the minim.log file. All keys are used case insensitive.

Key root declare root datafile for database. Each database consist of one
root datafile and optional sequence of extents. Minimal database structure
is one root datafile. File name for datafile must be specified to be accessible
to all MiniM processes which can work under different accounts. Files must
be placed in accessible directories and this can be network or other virtual
drives. Each datafile can have any size, MiniM Database Server uses only
64-bit addressing methods for positioning inside datafiles.

Key SizeLimit declares grows limit or the root datafile in megabytes. If
MiniM reach this limit, database does not grows more or if present database
extents, MiniM expand database extents specified. Example how to limit
root file to 2000 megabytes:

SizeLimit = 2000

20 CHAPTER 1. ADMINISTRATION AND SET-UP

If this key (SizeLimit) does not specified, MiniM will extend this file
without limits independently of was specified extents or not.

Key AutoExpand declare automatic database expansion (value 1) or
expansion is forbidden (value 0). If database expansion is forbidden, MiniM
Database Server does nor expand this database and any operation required
to extend datafile will generate an error. Administrator can manually ex-
pand databases using utility ˆ%DBSIZE. Database expansion is made auto-
matically by special expand daemon process minimed.exe. Each datafile is
expanded by 1 pages block. One page is 8 Kb and one pages block is 1 Mb,
128 pages.

Key Mount declare need to be used this database (value 1) at server start
or not (value 0). Database can be configured but not in use by any reason.
If database is not mounted (Mount=0), this database is not accessible.

Key Readonly declare database is accessible to read only (value 1) or can
be changed (value 0). If database is readonly, any process attempts globals
change will generate an error <DBREADONLY>.

Key AutoCreate declare need database be created on server (value 1)
start or not (value 0). This key is automatically created by installer for the
TEMP database. On server start all autocreated databases recreates from
scratch, have size 1 Mb and have not any data.

Key Journal declare need (value 1) or not (value 0) this database be
journaled. If this key is not specified, by default is used value 1. If journaling
for database is disabled, all database changes made cannot be rolled back by
rollback transaction and database state cannot be restored on restore from
backup with journal records apply because journal does not contain any
records fro this database. MiniM installer automatically desable journaling
for the TEMP database.

Key extentNNN declare database extent as datafile for extent to be
used with number NNN. Extent numbers must be numbered from 1 and
follows by order (1, 2, 3, ...). Extend datafiles can be placed in any directory
accessible by MiniM. For example:

extent1 = e:\minim\db\user1.ext

Key SizeLimitNNN declare grows limit for extent with number NNN
in megabytes. Keys SizeLimitNNN must conform to extentNNN keys.
If key SizeLimitNNN does not specified, this extent file will grows without
limit.

1.4. FILE MINIMTI.INI DESCRIPTION 21

If administrator configure database extents manually, first extent state
must be file with zero bytes length. The state of extent is automatically
controlled by MiniM Database Server and expanded by pages block 1 Mb
size. Extents numbers must follows in order and last extent can have no
limit to grows. If database consist of only root datafile, this root file can
have no grows limit. Otherwise all files of database except last extent must
have grows limit. MiniM Database Server use sequential expanding and filling
up pages in database as logical pages sequence. Server does not expand and
allocate new pages if database contains already freed pages.

Main extents appoinment is a different disks space usage by one database.
On backup MiniM make backup and restore of pages as logical pages se-
quence. Backup uses datafile configuration at backup moment and restore
uses datafile configuration at restore moment and this configurations can dif-
fers. So, extents are logical continuations of root datafile and prior extents.

In general, extent usage is not need if computer have enough disk space.

1.4 File minimti.ini description

File minimti.ini and minimti.exe application are used only in Windows edi-
tions of the MiniM Database Server. Unix-like MiniM versions use MiniM
Launcher, windowed application to start and stop MiniM server and to run
MiniM Client Tools.

Configuration file minimti.ini store settings for MiniM Service Controller
minimti.ini. This application show an icon in system tray and popup menu
to start, stop and restart MiniM Database Server and run additional appli-
cations. By default minim.ini is configured to run local GUI utilities, telnet
and local MiniM console.

Popup menu have fixed part and configurable part. Configurable part of
menu reads by minimti.exe application at start from special configuration file
minimti.ini.

Application use only one section [Run]. All listed keys and values are
menu items and command lines to start process. After installation section
[Run] can be as follows:

Run Telnet Client = telnet localhost 23

Run MiniM Console = minim.exe

MiniM Routine Editor = minimre.exe

MiniM Global Editor = minimge.exe

MiniM Control Center = minimcc.exe

22 CHAPTER 1. ADMINISTRATION AND SET-UP

Here key Run Telnet Client is used for a menu item and telnet localhost
23 as command line to start process.

Operator can delete or replace or add own items into minimti.ini. For
example, add run minim.exe in console mode with automatic run specified
commands:

My Application = minim.exe -x @mycmds.m

and specify in mycmds.m file commands to execute. This run mode execute
commands and process still active until executes halts.

All changes made in minimti.ini are accepted only on MiniM Service
Controller (minimti.exe) next start.

1.5 Registry records made by installer

Registry is used only in Windows editions of MiniM Database Server. Unix-
like editions use ini files places in the directory

/home/username/.minim

and in subdirectories of MiniM installation.

Registry is used to store records necessary for service, installer and client
utilities work.

Records for service

One part of common MiniM Database Server architecture is a Windows
service, which can be run, stopped, run automatically on computer start,
and can be controlled locally or remotely. Records in registry made for a
service are stored in a key:

HKEY_LOCAL_MACHINE\SYSTEM\

CurrentControlSet\Services

Child records have name derived from ”MiniM Service for ” with followed
MiniM instance name. For example, service for MiniM instance ”MINIM1”
use records

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Services\MiniM Service for MINIM1

1.5. REGISTRY RECORDS MADE BY INSTALLER 23

Registry records for MiniM service are made automatically on service
installing and uninstalling. It is not recommended to change this records
manually. This records are used by Windows to make operations with the
service. Other registry records for a service are placed into subkeys:

HKEY_LOCAL_MACHINE\SYSTEM\

ControlSet001\Enum\Root

HKEY_LOCAL_MACHINE\SYSTEM\

ControlSet002\Enum\Root

HKEY_LOCAL_MACHINE\SYSTEM\

ControlSet001\Services

HKEY_LOCAL_MACHINE\SYSTEM\

ControlSet002\Services

HKEY_LOCAL_MACHINE\SYSTEM\

CurrentControlSet\Enum\Root

and updated only automatically. Manual changes in this keys can break
normal service functioning. If this occurs, MiniM reinstalling can repair
registry records.

Records for server installer

MiniM Database Installer use special registry records as subkeys of:

HKEY_LOCAL_MACHINE\SOFTWARE\

MiniM Group\MiniM\Instance

Child records have name derived from MiniM instance name, for example,
MiniM instance with name ”MINIM1” use records

HKEY_LOCAL_MACHINE\SOFTWARE\

MiniM Group\MiniM\Instance\MINIM1

And here are stored records about installation directory, version, program
group and other version-dependent records. This records are used by installer
on installation or upgrade.

MiniM Database Installer also creates some registry records for uninstaller
in the key

HKEY_LOCAL_MACHINE\SOFTWARE\

Microsoft\Windows\CurrentVersion\Uninstall

24 CHAPTER 1. ADMINISTRATION AND SET-UP

with subkeys with name derived from MiniM, for example subkey MiniM is1.

Records for client utilities

MiniM Client Utilities use registry to store connection settings, user set-
tings, utilities appearance, for example colors and window position.

User settings are stored in as subkeys of

HKEY_CURRENT_USER\Software\

MiniM Group\MiniM\ControlCenter

HKEY_CURRENT_USER\Software\

MiniM Group\MiniM\GlobalViewer

HKEY_CURRENT_USER\Software\

MiniM Group\MiniM\RouEditor

and are differs for each user. This records are version-dependent, format
and keys can be changed later. Removing this keys does not affect to client
utilities work, in this case applications use default values for an each key and
record.

Connection settings are stored as subkeys of

HKEY_CURRENT_USER\Software\

MiniM Group\MiniM\Connections

This key have child subkeys with name as connection name and values
with connection options.

On removing all connections from registry client utilities will display an
empty connection list and in this case operator must add at least one con-
nection to connect to MiniM Database Server.

Records about connections to MiniM Database Server can be exported
from the registry to a file and imported on the other computers to leave
entering connection options on each client computer. This records have fixed
format and can be changed by any application who can change records in
the registry.

1.6 Backup and Restore

To make database system a fault-tolerance, MiniM Database Server imple-
ments backup and restore functionality and internal architecture things such
as journal-based transactions and before image journaling.

1.6. BACKUP AND RESTORE 25

MiniM Database Server administrator must understand MiniM details
and principles how to plan database backup to make database system fault-
tolerance.

MiniM Database Server contains several processes: service (mnmsvc.exe),
write daemon (minimwd.exe), database expand daemon (minimed.exe), jour-
naling daemon (minimjd.exe) and executive processes (minim.exe). Server
starts and stops if starts and stops MiniM service. Service create and control
common shared server objects, runs daemons and handles incoming telnet
connections.

To protect common shared objects from unexpected termination of own-
ers MiniM service guards all processes. Service wait all processes and if pro-
cess terminates unexpectedly, service runs guardian process to clear internal
structures, rollback uncompleted transactions or continue daemons.

On unexpected termination of executive process (minim.exe) service runs
guardian process to clear internal shared objects (locking objects, modified
cache pages). Guardian process does not use any license and terminates after
clearing shared objects.

Second part of MiniM Database Architecture to make database system
fault-tolerance is a datafiles set.

Main data of databases are in the datafiles, as configured in minimdb.ini
file. Database is a contiguous file space made by root datafile and serial set
of extents.

In addition to datafiles server use file of before image journaling minim.bij
and journal files from journal subdirectory. Real files location defined in
configuration file minim.ini.

All executive processes and daemons still work concurrwntly and asyn-
chronously. Daemons wait changes made in internal queues to write to disks
and if write condition is occured, daemons executes writing. Executive pro-
cess does not make any writes to datafiles or to a journal and make read
only of data from datafile into page cache. To implement concurrent access
MiniM Database Server use internal strategy ”one write, many read”.

If MiniM Database Server stop working, after last executive process ter-
minates, some part of data can be placed not in the datafiles, but in the
before image journaling. On next server start MiniM Database Server exe-
cutes special action to continue write data to appropriate datafiles to make
global’s data read correct.

Caution: MiniM Database Server implements logically correct data for
executive processes only (minim.exe), not for data files.

26 CHAPTER 1. ADMINISTRATION AND SET-UP

MiniM start procedure provide special guaranteed control point of full
database integrity, for which state the before image journal does not contain
any data not written to datafiles. Server stopping procedure contains this
control point too. But integrity control point is not guaranteed from power
or hardware fault. To protect data from this fault MiniM Database Server
support backup.

In general, all backup methods can be divided into two big groups - cold
and hot backup. Cold backup is simple file backup with datafiles set copying
and backung up for later restore as is into the same places. Hot backup is
a special procedure for special files production without server stopping and
to use later this produced files in special restore procedure. Cold backup
can be divided to two groups - with server stopping and without server
stopping. For MiniM Database Server cold backup without server stopping
is not guaranteed mathod to get all need data into datafiles set.

To use cold backup with server stopping for MiniM Database Server it is
recommended two methods: 1) stop server and copy datafiles set and before
image journal or 2) stop server, start and stop again to prevent all unwritten
before image journalling data writes to a datafiles. In first case nefore image
journal is necessary to implement control integrity point. In second case
control integrity point is guaranteed by server start procedure and datafiles
contains all saved data. Journal files can be copied in depending of selected
database restore stategy.

Journal is one more thing to implement some database functions. Journal
in general include all files are placed into the journaling subdirectory. This
directory location can be redefined by administrator in the configuration file.
All files in journal subdirectory are used in total only, all files set.

MiniM Database Server writes into journal all need information about
database changes. This records are used for two tasks: 1) transaction rollback
and 2) database restore.

Files of journal on globals changes are continuously grows, unlike of
database files. If processes changes only several global names, common
datafiles size can no grows, but each of this action adds some record into
journaling files. Database journaling can be disabled in database configura-
tion file minimdb.ini for each used database personally.

Unlike of database files, who store current globals state, jornal stores all
changes made like a time machine. This capability can be used by database
administrator to create a database backup and restore strategy. Later is de-
scribed the hot backup only and a hot backup details. After full backup been

1.6. BACKUP AND RESTORE 27

made all databases continues to changes and all changes made are recorded
into a journal. And, on database restore from backup file databases will be
restored to backup moment. All changes made later can be applied from jour-
nal on database restoring. In other word, backup files and journal files are
full files set to restore database. Administrator must understand that journal
loss cannot restore database to last state but only to backup moment.

MiniM Database Server implements two hot backup forms - full and dif-
ferential.

Full backup have three stages: 1) save to backup file all pages of datafiles
and mark pages as backed up, 2) save to backup file all pages been modified
(in time of first stage) and mark pages as backed up and 3) freeze all other
processes, save all modified pages (in time of second stage) to backup file and
mark as backed up and unfreeze freezed processes. After backup server still
work in normal execution.

On backing up datafiles pages MiniM uses some compression to reduce
used space and backup file can be less then datafiles.

Differential backup make only second and third stages and save to backup
file only pages been modified since prior backup - full or other differential.
On restore it is required select backup files in the same sequence files been
created - full and next set of differential backups. After restoring from last
backup file operator can apply changes made and recorded in a journal to
get last available actial database state. This procedure require, of course,
journal files are correct. In this case MiniM search in a journal appropriate
backup point and apply changes made from journal in the same order this
changes been made including transactions rollbacks.

So, on datafiles restore operator must select one of possible alternatives
about journal: 1) apply journal records after backup been made, 2) nothing
to do with journal and 3) rollback transactions still active on backup moment.

Second alternative can be recommended if it is restoring from the backup
files set and it is not last backup file.

Third alternative, with rolling back uncommitted transactions, creates
logically correct datafiles on beckup moment only. This alternative can be
used if data changes been made after backup are unneed. This operation
require journal records, MiniM must find backup point in a journal and
rollback changes been made.

To reduce used by journal space operator can select on backup option to
truncate journal. In this case MiniM removes from journal files set all records
unneed to restore current uncommitted transactions. Some of journal files

28 CHAPTER 1. ADMINISTRATION AND SET-UP

MiniM can delete or replace. Journal truncation may take some time and
MiniM have special protection for journal truncation - if hardware fails on
truncation, at the next start MiniM complete truncation automatically.

Also operator can truncate journal files set at any time without backup
procedure. This can be a part of selected fault-tolerance strategy.

Journal is a special linked sequence of journal files and MiniM uses in
most cases only last of ones. Operator can execute special operation to switch
current journal file. In this case MiniM server creates one more journal file
and prior other journal files can be copied to another place or can be saved
with a backup files. Journal files have special names as date file been created
and next number for file created within this day. Operator can use journal
files names to copy or move currently unneed journal files. It is recommended
that operator be sure prior journal files really does not need and does not
contains records need to rollback uncommitted transactions.

On restore MiniM check backup file type and restore type.

On restore MiniM check than server does not have any processes in a
opened transaction state. In this case MiniM refuse from restoring to protect
databases, transactions and to prevent transactions overwrites data restored
from backup.

Backup files contains database size been at the backup moment. It is
common datafiles size of database, including root datafile and all extents.
On restore MiniM changes database size to saved in the backup file.

MiniM restore database size and change datafiles pages using currently
used at restore moment configuration, specified in minimdb.ini file. Operator
can backup database in one datafiles configuration and restore in another
datafiles set. If need, MiniM can extend datafiles or shrink to zero size using
current configuration. And on restoring all datafiles pages been backed up
used as a logical sequence covered all database from root to last extext.

MiniM Database Server allow operator select special database restoring
strategy, application-oriented.

Let it be two (of more) possible backup and restore strategies.

First strategy - ”all changes been made are important and need to be
transferred to other server”. Operator must prepare common globals, rou-
tines and bytecode in a database and must make full backup of selected
database with journal truncation. This backup file need to restore on other
server with option dont use journal records. After restoring on target server
we have database made on first server with all need routines, globals and

1.6. BACKUP AND RESTORE 29

compiled bytecode. Also data can be transferred using export and import
procedures, but in this case database wil contain other data exists prior im-
port data to transfer. And using backup-restore procedure we got the same
database but in possible other datafiles configuration.

Second strategy - ”all changed are important on last fault moment”. Op-
erator select backup periodicity of full backup, for example, once in a week.
Full backup executes with journal truncation. And using small interval (for
example, one day) operator plans differential backups without journal trun-
cation. And, after full period (in this case one week) operator have one full
backup and a set of differential backup files. And on restore operator can
restore from full backup and set of differentional backup files. All backup
files except last must be restored without any journal operation and last
differential backup file must be restored with applying journal records been
made after last differential backup.

MiniM Database Server does not record in backup files any info about
prior backups been made. And backup files does not contains any information
about each other. So MiniM cannot control right order to restore database
from backup files. This order must check operator. And, operator must
create rules for backup file naming and restore strategy. MiniM have no any
limitation about file names and extensions.

Each backup operation creates one more record to a journal and on restor-
ing MiniM searchs this backup point.

Operator can backup and restore databases using ˆ%BACKUP and ˆ%RE-
STORE utility or create own automated utility using MiniM internal func-
tions $view(”db”). And, this backup and restore operations can be embedded
into application and implement special application requirements and strat-
egy.

On hardware or software fault operator can combine three actions -
solve problems with hardware or software, make backup and make restore
database. Let it be, for example, some situations.

1) Corrupted one or more extents of database or before image journal and
journal is correct.

Solution - restore database from backup with applying journal records.

2) Journal corrupted.

Solution - remove journal and make full backup.

3) Datafiles and journal are corrupted.

Solution - restore database from backup without journal applying.

30 CHAPTER 1. ADMINISTRATION AND SET-UP

4) Hardware fails on database restoring.

Solution - solve hardware problem ans repeat database restoring.

5) Before image journal (minim.bij) file is corrupted and file minim.log
contains a record about server (MiniM instance) startup problem.

Solution - stop server (MiniM instance), remove before image journal file
(minim.bij) and start server (MiniM instance) again.

After restoring database from backup it is recommended check the nature
of data been lost from the point of view of available applications. In any case
it is recommended to use uninterruptable power supply and periodically check
filesystem.

1.7 Handling lack of disk space

If MiniM Database Server detect that the disk space is not enough to com-
plete operations, server launch waiting space been freed. Server attempt
to write to minim.log file special diagnostic message and process who must
write data generates an error about database operations cannot be complete.
MiniM server detect the following disk space lack:

Configured database growth limit.

If server process detects database size limit is reached, but some operation
requires to extend database, process generates an error <DBLIMIT>.

It is recommended to analize application been executed and make changes
in application or in database configuration to conform application require-
ments.

Disk space is not enough to write to before image journal file
minim.bij.

If MiniM write daemon detect that disk space is not enough to complete
write to before image journal operation, write daemon make special diagnos-
tic record to minim.log file and switches all used databases into read only
state. After this all MiniM processes on global change operations generates
an error <DBREADONLY>.

If this situation has been detected, server have several pages of datafiles
in internal page cache area. Write daemon periodically attempt to write
pages to before image journal to complete database changes made. It is
recommended to free some disk space for minim.bij file growth and using
functions $v(”db”,23) or $v(”db”,24) switch databases from read only state

1.8. TELNET ECHO 31

to normal, as specified in configuration file minimdb.ini. This changes can
be made without server restart and minimdb.ini files changes are unneed.
After moment writing to before image journal can be possible write daemon
completes database changes been made and continues to work. All other
server processes can continue to work and does not lost transactional context
or data.

Disk space is not enougth to expand database.

If MiniM detect that database extending is required but disk have not
enough space, expand daemon send signal to processes who waits database
extending and this processes generates an error <DBEXTEND>. After this
expand daemon switches databases into read only state.

It is recommended to analize application requirements and disk space
available and free disk space up to several megabytes (databases are ex-
panded by 1 megabyte per step). After freeing disk space it is required using
functions $v(”db”,23) or $v(”db”,24) switch databases states from read only
to a normal state. After this changes all next database operations will be
executed normal and processes can continue to work without transactional
context and data been lost.

Disk space is not enough for journal.

If MiniM server detect that journal operation cannot be complete on disk
space limit, journal daemon switches databases into read only state, writes
special diagnostic message to a minim.log file and periodically attempt to
complete journal operations. In this case internal journal buffer can contain
journal records have not written to journal file. If administrator stops server,
this journal records can be lost.

It is recommended to free disk space for journal subdirectory, for example,
move old journal files into other place, and using functions $v(”db”,23) or
$v(”db”,24) switch databases to a normal state.

In general, can be recommended configure databases growth limit as really
need, periodically make backup with journal truncation and monitor disk
space is available for MiniM server.

1.8 Telnet echo

If you use default Windows telnet client (telnet.exe) to connect to MiniM
Database Server, it can appear with local symbols echo on key press. It is a
client settings, not a server. To disable symbols echo, you must connect to

32 CHAPTER 1. ADMINISTRATION AND SET-UP

any telnet server, for example MiniM, and press in the Windows telnet client
window keystroke

Ctrl+]

This comand switches telnet client to local settings control. Next type
this command:

unset LOCAL_ECHO

End press Enter key twice. Telnet client will return to normal screen to
interact with telnet server and store settings for later usage.

Full Windows telnet commands is listed by command:

?

You can enable or disable any option available by the set and unset com-
mands. Full command options supported is listed by commands:

set ?

unset ?

If you use Putty telnet client, you can see characters doubling too. To
disable characters doubling as local echo, go to the Putty settings and in
configuration tree select Connection, next select Telnet and for telnet options
select Passive. This screen show how it appears:

1.8. TELNET ECHO 33

Also you must select one more option for echoing. In configuration tree
select Terminal and in both options Local echo and Local line editing select
option Force off. This screen show how it appears:

34 CHAPTER 1. ADMINISTRATION AND SET-UP

If you are using other telnet client and this application make local echo
with characters doubling, consult with support of this application how to
configure this telnet client to disable local echoing.

1.9 MiniM Collation Editor

MiniM Database Server contains special GUI utility MiniM Collation Editor
(/bin/minimne.exe) to edit or create new special collation definition files.

Collation definition contains in the file with .N extension and this file

1.9. MINIM COLLATION EDITOR 35

must be placed in the /nat subdirectory of MiniM installation. This file
contains three definition tables:

1. Upper case

2. Lower case

3. Collation order

For each of this tables editor shows three panels to edit. On saving editor
saves this three tables in the file simultaneously.

Editor allow to edit upper case ans lower case rules as different rules and
does not check this tables conformance.

On the panels editor shows three columns - symbol using selected font,
decimal and hexadecimal code. To select code or symbol to be in specified
position need to click field, activate editor and select new value.

36 CHAPTER 1. ADMINISTRATION AND SET-UP

To change collation order need to switch to ”Sort Order” panel, select
symbol to move relative others and press on the toolbar buttons with ar-
rows to move one position up or down. Or press Ctrl+Up or Ctrl+Down
keystrokes.

1.9. MINIM COLLATION EDITOR 37

On editor start all panels are automatically filled by default values. By
default editor defines upper case and lower case for English letters, and upper
case and lower case rules for characters greater than 127 does not defined.
Collation order by default is a characters code comparision order.

Collation table to be used by the MiniM Database Server instance must
be selected in configuration file minim.ini, section Server, key Locale. Value
of this key must be a file name without extension and this file must be
present in the /nat subdirectory. Collation tables are accepted by the server
on start and changes of this key value while server still work does not affect
to processes.

The table of upper cas rule is used in functions $zupper and $zcvt(str,”U”).
The table of lower case rule is used in functions $zlower and $zcvt(str,”L”).

Moreover, tables of upper case and lower case rules are used to determine
is the character a letter or not - if upper case and lower case of this character
are differs from each other, MiniM suppose this character be a letter and use
this recognition in the patterns for an ”A” patcode.

38 CHAPTER 1. ADMINISTRATION AND SET-UP

The collation table is used by the index sorting operator to determine
characters following and by subscript comparision to handle subscripts of
local, global variables.

To change current collation table for MiniM Database Server instance
need to do:

1. Define which globals are use current collation.

2. Export this globals using one of variable lenght format.

3. Kill this globals from databases.

4. Stop MiniM instance.

5. Specify in file minim.ini new collation file to use.

6. Start MiniM instance again.

7. Import global’s data in the same databases.

Collation changes for existing globals can create data phantoms in globals,
when one operations can see data but others not. Need to understand that
global read, kill and write are a data-driven algorithms. For local variables
collation rule changes are safe, because local variables are lost on server stop
and start to accept new collation. Restoring from backup requires the same
collation rules as it was on backup. Importing globals from block exported
data requires the same collation as it was on exporting too.

1.10 MiniM license key usage

MiniM Database Server implements license as a special license key file. It is
file minim.lic file, placed in the /bin subdirectory of MiniM instance.

License file minim.lic is a text file and use INI file format. Sample of how
this file content can appear:

[License]

Customer=MiniM Test Group

Count=100

Date=2010.03.31

Key=68DB33AA69A1ADE5078B2F48363

1.10. MINIM LICENSE KEY USAGE 39

File can contain information about who is license owner, how much pro-
cess allowed to run, expiration date and key signature. License file can con-
tain other additional keys.

If license key does not contain expiration date this key is time unlimited.

If MiniM server cannot find license key, or this file have incorrect data,
or date of license is expired, server suppose that have zero licensed processes
to run.

Common limitation by process count to work is a licensed processes plu3
3 engeneering processes. So, after license expiration or if license file is ab-
sent, server allow to run only 3 engeneer processes. In general, 3 additional
engeneer processes are intended for special administrative tasks, or to run
background processes, or for evaluating software. And, in any case, admin-
istrator can use this additional engeneer processes for his discretion and can
include this processes into production process set.

Total process limitation for server counts as licensed processes, enge-
neer processes and process limits have been specified in configuration file
minim.ini, section Server, key ProcessLimit. Server uses minimal value. Ad-
ministrator must check both values on license key replacing. Intended in
configuration process limit allow administrator limit memory usage for fu-
ture MiniM versions with unlimited process counts in license key. On server
start counted process number is used to reserve special shared memory area
to prevent memory fragmentation and improve server stability.

To change license key administrator must replace license file minim.lic
in the /bin subdirectory of MiniM instance to the new content and restart
MiniM Database Server. License limits and other configuration options are
accepted only on server start.

MiniMono difference

MiniM Embedded Edition does not use any license key, it is free of royalty
software.

40 CHAPTER 1. ADMINISTRATION AND SET-UP

Chapter 2

Devices

2.1 Development with TCP device

Before use TCP device developer must choose type of device usage. Device
TCP can work in three modes: client, server and concurrent server.

How to use TCP device as a server.

To use TCP device as a server developer must implement the following
steps:

1) Open device.
2) Make device current and select mode - text or binary and select ter-

minator if need
3) Go device to the /ACCEPT operation.
/medskip After this device is ready to accept incoming tcp/ip connections.

And after completing the followed command

use dev:/ACCEPT

following commands executes after incoming tcp/ip connection is established.
And following commands a ready to read and write to device and transfer
data to and from connected client application.

4) Disconnect and close device by the close command.

Example how to use TCP as a server

s dev="|TCP|:123" ; 1

o dev ; 2

u dev:/ACCEPT ; 3

r *ch ; 4

41

42 CHAPTER 2. DEVICES

w $c(ch+1) ; 5

u 0 ; 6

c dev ; 7

Describe this example step-by-step:
1) Specified device type TCP and this device must accept incoming con-

nections to tcp port number 123.
2) Open device.
3) Make device current and goes to /ACCEPT operation to wait incoming

connections.
4) This command executes after client tcp application connects to port

been used. MUMPS code reads character code into ch variable.
5) Server send character back to client application with code plus 1.
6) Make principal device current.
7) TCP device closed, other operations with this device are impossible.

For this simple example can be used any telnet client, for example tel-
net.exe. Run this application and type to connect:

open localhost 123

To reuse device for other connection it is unneed to close device. Sec-
ondary /ACCEPT operation automatically closes connection and goes to
wait incoming connections again.

Example above with small changes to handle connections one-by-one:

s dev="|TCP|:123"

o dev

f u dev:/ACCEPT r *ch w $c(ch+1)

Here in the cycle MUMPS code execute /ACCEPT for TCP device, wait
connection, reads one character and send back character with code plus 1.
First /ACCEPT operation only wait connection and secondary closes avail-
able connection and wait next incoming connection.

More complex servicing example – simple HTTP service. In this example
process opens TCP device, waits incoming connections, reads HTTP headers
and outputs simple HTTP answer as a very simple HTTP page.

socktest

; open socket device

n io="|TCP|:2233"

2.1. DEVELOPMENT WITH TCP DEVICE 43

; close device if was opened

i $d(^$d(io)) c io

; device was specified as server-side TCP socket on 2233 port

; open it in read-write and text mode

OPEN io USE io:(/MODE="rwt")

continue

; wait incoming connection

; this example does not use timeout for accept

USE io:/ACCEPT

; accepted socket is inside of current device and will be used

; in read and write operation until next accept or closing

d trace("accepted")

; read headers

n line,headers f r line:0.01 q:line="" d

. s headers($i(headers))=line

d trace("headers done")

; dump headers to console

d dump(.headers)

; write answer

d answer

d trace("answer done")

; continue

g continue

answer

w "HTTP/1.0 200 OK",$c(10)

w "Content-Type: text/html",$c(10)

n text="<html><head></head><body>"

s text=text_"Constant HTTP answer.</body></html>"_$c(10)

w "Content-Length: ",$l(text),$c(10)

w $c(10)

w text

q

trace(str)

; write to principal, not to socket

n saveio=$io

u $p

w "Trace: ",str,!

u saveio

q

dump(var)

q:’$d(var)

44 CHAPTER 2. DEVICES

; write to principal, not to socket

n saveio=$io

u $p

n i f i=1:1:var w var(i),!

u saveio

q

After running this example in console or in telnet it waits incoming con-
nections from the WEB browser at address

http://localhost:2233

and outputs to the operator screen diagnostic messages.

How to use TCP device as a concurrent server.

To implement concurrent server using TCP device it is need to create two
parts - parent and child subroutines.

Parent subroutine must create TCP device as a server TCP device, and
make /ACCEPT operation to wait incoming connections. After accept con-
nection parent subroutine must run child subroutine as separate job and give
accepted socket. Parent part can run the same label or different depending
connection characteristics. After running child process parent part is ready
to execute /ACCEPT operation again. So, parent part must implement:

1) Create TCP device and specify it is server device and specify tcp port
to listen.

2) Select device mode for parent process.
3) Make device current.
4) Make /ACCEPT operation and wait incoming connections.
5) After executing /ACCEPT parent part is ready to run child job and

pass accepted connection.
6) Run child job using the job command and pass TCP device which have

accepted connection.
7) After job command current device of parent process can be reused

without closing and parent subroutine can repeat /ACCEPT operation.
8) If it is need, parent subroutine can close TCP device. All child process

have been run still in active state and continue to interact with clients.

Child subroutine does not requires any special things to work with device.
Child process already have principal device accepted TCP connection, and
this device stay in binary mode with an empty terminator. Child process
can change device mode or terminator. Child connections still work on the
same tcp port as parent connection.

2.1. DEVELOPMENT WITH TCP DEVICE 45

Example how to use TCP device to implement concurrent server.

; parent server part

srv

n dev="|TCP|:2525" ; 1

o dev ; 2

f q:$d(^STOP) d ; 3

. u dev:/ACCEPT ; 4

. j child:(:$io) ; 5

c dev ; 6

q

; child server part

child

u $p:(/MODE="rwt")

w "Child job, #"_$j,!

r "enter your name: ",name,!

w "Name is: ",name,!

r "Press any key to quit.",name,!

q

Describe this example step-by-step.

Parent process

1) Declare device identification string for TCP device as a server and
specify tcp port to listen number 2525.

2) Open device.
3) In cycle while need not stop execute subroutine.
4) Device have beeo nopened make current and make /ACCEPT to wait

incoming tcp connections.
5) Run child process with the child label and pass device in concurrent

mode (specified as job options (:$io)).
6) After end of cycle device closed and current device is a principal device.

Child process

This example is a telnet-oriented connection handler and have very simple
interface. Child process changes current device mode from binary to text and
after this device automatically handle carriage return and line feed symbols.
Next child process execute simple interaction operations.

If telnet-client does not show symbols have been entered, it is need to
enable local echo mode. For example, Windows Telnet Client can change
echo mode by commands after pressing Ctrl+]:

46 CHAPTER 2. DEVICES

set LOCAL_ECHO

and

unset LOCAL_ECHO

How to implement TCP client.

To implement TCP client it is required to make the following steps:

1) Create TCP device and specify server name or ip address and port to
connect to.

2) Select appropriate device mode, text or binary and terminator.
3) Make device current.
After this device is ready to interact with tcp server specified. TCP

connection is made on device opening.
4) Close connection by close command with TCP device.

Example how to use TCP device as a client.

s dev="|TCP|localhost:80" ; 1

o dev:(/MODE="rwt") ; 2

u dev ; 3

w "GET /",! ; 4

f i=1:1:10 r ans(i) ; 5

u 0 ; 6

c dev ; 7

w ; 8

Describe this example step-by-step.

1) Declare device identification string for TCP device and specify server
localhost and tcp port number 80. Here we demonstrate query to local web-
server and reading answer.

2) Device is opened in text mode and allow read and write.
3) Make device current. After this all read and write commands receive

and send data to webserver.
4) Write to device string ”GET /” and line feed. In the HTTP protocol

this string mean query to the root page (”/”) by the GET method. Line feed
is an indicator of the end of http request.

5) In cycle from 1 to 10 lines are read and placed into subscripted local
variable ans. Device still wotk in text mode and end of lines are determined
by line feed characters received from webserver.

6) Make principal device a current device.

2.2. DEVELOPMENT WITH CON DEVICE 47

7) Client TCP device closed. Process closes connection to webserver and
all internal data related to device are removed.

8) Write to the current device all local variables to see received data.

For example, if we call webserver Apache with default root page, we can
get the following answer:

ans(1)="<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">"

ans(2)="<HTML>"

ans(3)=" <HEAD>"

ans(4)=" <TITLE>Test Page for Apache Installation</TITLE>"

ans(5)=" </HEAD>"

ans(6)="<!-- Background white, links blue (unvisited),

navy (visited), red (active) -->"

ans(7)=" <BODY"

ans(8)=" BGCOLOR="#FFFFFF""

ans(9)=" TEXT="#000000""

ans(10)=" LINK="#0000FF""

If programmer use binary mode instead text mode, it is required to de-
fine read terminator or limit reading by read timeout. Server can send, for
example, 100 bytes and client side must correctly determine where data ends.

2.2 Development with CON device

Console escape sequence processor

On output characters to console MiniM process check characters sequence
have been sent and search special escape control sequences. Escape se-
quence starts with special symbol $C(27) and terminates by special symbol-
terminator, and all sequence from $C(27) to terminator ([, ;, 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, =, ?) are used as full escape sequence to execute. Delimiter charac-
ters splits separate values of escape parameters. Action for escape sequence
is depended of escape sequence terminator and other parameters before ter-
minator are escape parameters. In depend of escape sequence parameters
can be absent, or can be one, two, or more.

Table of symbols for escape sequences

Symbol Description
Esc Symbol 2 (decimal code 27, hexadecimal code 1B)

48 CHAPTER 2. DEVICES

Pn Number in string representation, decimal digits of num-
ber (12, 56, ...)

Pl Number of display line
Pc Number of position in the line (column)
Pa Display attribute

If escape sequence does not contain parameter (parameter is omitted), it
is processed with parameter by default. Impossible values of parameters are
ignored and unsupported escape sequences are ignored too.

Control symbols

Code Description
7 Bell
8 Left by one column
9 Horizontal tabulation, step by 8 columns
10 Line feed (column does not changes)
11 Vertical tabulation (the same as code 10)
12 Form feed (clear screen, caret to the upper left display

corner)
13 Carriage return (caret to the begin of line)

Caret movement commands

Display start (line 1, column 1) EscH or Esc[H or Esc[f
Caret up (same column) Esc[PnA or Esc[A or EscA
Caret down (same column) Esc[PnB or Esc[B or EscB
Caret right Esc[PnC or Esc[C or EscC
Caret left Esc[PnD or Esc[D
Positioning (full) Esc[Pl;PcH or Esc[Pl;Pcf
Save caret position and attributes Esc[s
Restore caret position and at-
tributes

Esc[u

Clear screen commands

From caret to the end of line Esc[0K or Esc[K or EscK
From begin of line to caret Esc[1K
Entire line Esc[2K
From caret to the end of screen Esc[0J or Esc[J or EscJ
From begin of screen to caret Esc[1J
Entire screen Esc[2J

2.2. DEVELOPMENT WITH CON DEVICE 49

Insert and delete commands

Insert empty lines Esc[PnL
Delete lines Esc[PnM
Delete characters (replace to
whitespaces)

Esc[PnX

Video attributes commands

Set video attribute Esc[Pa;Pa;...;Pam

Video-attribute codes

0 all attributes cleared
1 brightness on, hight
2 brightness off, normal
30 black text
31 red text
32 green text
33 yellow text
34 blue text
35 magenta text
36 cyan text
37 white text
40 black background
41 red background
42 green background
43 yellow background
44 blue background
45 magenta background
46 cyan background
47 white background

Show and hide caret

Hide caret Esc[?25l
Show caret Esc[?25h

50 CHAPTER 2. DEVICES

2.3 ATR mnemonic

ATR mnemonic is intended for CON and TNT devices for compatibility with
legacy terminal applications and is short version of the SGR mnemonic. The
ATR mnemonic is not a part of standards.

In any case the color attribute for /ATR mnemonic is specified as a num-
ber greater than 0 and less then 256 by the following table:

Bit number Value
0, 1, 2 Text color
3 Text brightness
4, 5, 6 Background color
7 Background brightness

So, color attribute can be convenient specified using hexadecimal numbers
where first digit is a background color and second digit is a text color. If it
is required to use increased text brightness, need to add to second digit 8,
and if need to use increased background brightness, add 8 to first digit.

Colors table:

0 black
1 red
2 green
3 yellow
4 blue
5 magenta
6 cyan
7 white

Examples:

#17 red background, white text
#07 black background, white text
#4B blue background, bright yellow text
#AF bright green background, bright wthite text

Usage examples:

W /ATR(#05),"magenta color"

W /ATR(#42),"green text on the blue background"

2.3. ATR MNEMONIC 51

W /ATR(#07),"ordinal white color"

52 CHAPTER 2. DEVICES

Chapter 3

Technical Articles

3.1 minim.exe command line switches

MiniM Database Server’s executive minim.exe supports several command line
switches to control process and pass arguments. Some of switches are docu-
mented and can be used in production and some switches are undocumented
and can vary from version to version.

Command line switches can be specified in any sequence. If switch have
value, this value must follow by switch. For example, switch -h can be
specified in any place and switch -x must have value with specification what
must be executed and this value must directly follows by the switch.

Switch -std.

This switch is used to directly specify that new MiniM process must
be run with STD default device. In this case process use standard input-
output channels stdin and stdout. Input and output can be redirected to
and from disk files or other applicaitons standard stdin and stdout channels.
If minim.exe process have been run with redirection, process automatically
determine needs to use STD device event if -std switch does not specified.

If process been run in console mode and can accept user input from
keyboard, this process automatically use CON device as default device. If
process have been run interactively but must use STD device by default,
switch -std do this. And in this case process does not use console control
and use keyboard input and output to screen as other simple applications.
For example, this mode can not highlight symbols on the screen.

Switch -x

53

54 CHAPTER 3. TECHNICAL ARTICLES

Switch -x is intended to specify what commands must be executed on
process start. If following command line option starts with special symbol
@, next option part is used as a file name to get lines of code to execute.
Otherwise following option is a comand sequence need to execute. Lines in
file can be delimited by empty lines and must be created like entered from
the keyboard, without labels and dot syntax. For example:

minim.exe -x "w $zv,!"

this command runs MiniM process and specify to execute MUMPS command

w $zv,!

Other example:

minim.exe -x @script.m

this command runs MiniM process and specify to execute lines of code from
script.m file line-by-line.

Switch -h

Switch -h specify that MiniM process must terminates after all commands
from command options been executed. Process terminates by executing the
halt command. Process can execute command halt if this command been
specified in command options or in any code been called too.

Switch -nspace

Switch -nspace specifies current database name for new process, name
must follows switch keyword. Example:

minim.exe -x "d label^routine" -nspace USER

If current database for new process does not specified, process use as
current database default database for new process, specified in the minim.ini,
section [Process], key Namespace.

Switch -ignore

Switch -ignore is used to specify this switch and the following command
options does not need to analize. If this switch is present, process stops to
analize followed options.

3.1. MINIM.EXE COMMAND LINE SWITCHES 55

Switch -ignore is intended to use for run process from other environ-
ment which automatically append command options, for example webserver
Apache if minim.exe is used as direct cgi-module.

Other switches

Other switches are internal and undocumented or unsupported. If MiniM
process detects unsupported switch in command line options, process ignores
this switch but make special record into minim.log file. Unsupported swithes
does not affects to MiniM process, but MiniM count this switches as errors
and record to minim.lof file is a warning. This may be misprint or an error.

Input-output redirection

To redirect input-output MiniM supports redirection using symbols <, >,
and |. If MiniM process detect redirection, process starts with STD device
by default and if redirection been terminated, process terminates too. If
process been run with redirection, device STD does not output prompt as
current satabase name and > symbol and does not make line feed after each
line of command execute. Process suppose that output formatting have been
specified directly. MiniM process have not any output to stderr standard
channel.

Examples how redirection can be used:

1) minim.exe < cmds.m

2) minim.exe < cmds.m > out.txt

3) minim.exe < cmds.m >> out.txt

4) echo w $zv,! | minim.exe

5) echo w $zv,! | minim.exe > out.txt

Here first example runs MiniM process with input lines of command from
cmds.m file. All lines are compiled and executed sequentially, line-by-line.
After last line execution process terminates.

Second example runs the same as first but redirects output to out.txt file
unlike to screen as in first example. After all commands been executed all
output is stored in the out.txt file.

Third example is the same as first and second, but output does not replace
out.txt file content if this file already exists, and append output to existing
content.

Fourth example runs echo Windows command, which outputs symbols w
$zv,! with redirection to input channel of MiniM process. All echo argument
to | symbol is placed into input channel of MiniM process.

56 CHAPTER 3. TECHNICAL ARTICLES

Fifth example is the same as fourth example but redirects output to the
out.txt file, not to screen.

Input-output redirection is intended to use MiniM Database Server in
different cases and integrate with different other applications using open
interfaces.

3.2 ZDLL module development

MiniM Database Server implements calls to external dynamic link libraries.
This library can be written using any compiler which can build Windows 32
bit dll. This calls are named as ZDLL and this special dynamic link libraries
are ZDLL modules. MiniM allow calls and data transfer from MUMPS to
external ZDLL module as such as from ZDLL module to internal MiniM
environment.

Programming interface on the MiniM side is made by special function
$zdll() and this function is described in the MiniM Language Guide.

Now application programming interface is present in the C/C++ interface
and oriented for widely used compilers. And this interface is intended in the
form and calling conventions which allow to use any other Windows - oriented
development tools. In this case programmer must use special conventions of
selected language and compiler to create dll.

Common principles of ZDLL module are the standard principles to work
with special dll extensions. System function $zdll() searches library file,
loads and initializes module in own memory space and calls special function
to get available exported functions ready to call from MiniM environment.
This special function must return array with exported functions definitions.
Array must be ended with zeroed record. ZDLL can implement one or more
functions and must define this functions in one definition array. Function
which returns exported functions definitions is called only once and function
must return array in memory available at all time ZDLL module is loaded.
This memory can be statis or dynamic and in second case ZDLL module
must free used memory independently on library unloading.

One definition of exported function consists of two fields - pointer to
function who must be called with fixed prototype and pointer to ASCIIZ
string with function name for late binding. This string can contain any
characters and MiniM search functions by this names case insensitive.

Each exported function must be provided by pointer and must accept
four arguments. It is pointer to special structure with callback functions and

3.2. ZDLL MODULE DEVELOPMENT 57

pointer to buffer for function result. Function $zdll() before call initializes
data in the return buffer as an empty string and in any case $zdll() function
return result, at least empty string. Third parameter accepts real argument
count passed by $zdll() function to ZDLL module and fourth parameter is
an open array of values for passed parameters. So, one function can accept
variable length parameters.

Exported function of ZDLL module can call internal MiniM environment
for 1) evaluate MUMPS expression, 2) execute commands of MUMPS lan-
guage like xecute command and 3) call functions and subroutines with direct
arguments values passing. First and second call required string construction
on MUMPS language with doubling quotes as need and third call does not,
values are passed as is.

All data transfer between MiniM environment and ZDLL module are
made using special unified structure MINIM STR, defined in zdll.h header
file. This structure contains two fields - len as tag or data length and data
bytes array. If value of len is greater than or equal zero, this mean string
passing with this length and data must contain bytes of string. Otherwise len
field contains special tag indicating type of number been passed (MT INT32
for int32 integers, MT INT64 for int64 integers or MT DOUBLE for doubles)
and in data field must be binary number representation in Intel byte encoding.

To convert from one type to another, read and write non-string data
MiniM give several special functions GetDouble, GetInt32, GetInt64, GetStr,
SetDouble, SetInt32, SetInt64. To create string data ZDLL function must
allocate buffer for MINIM STR structure, specify data length and fill array
of characters. All other bytes over specified len are ignored and string can
contain any characters including zeroes and nonprintable. Convert functions
returns a result independently of the passed format, for example, GetInt32
return an integer even been passed string or double and GetStr return string
representation even been passed one of the number form.

Callback function ErrStr returns current value of the $zerror system vari-
able.

MiniM installer installs three examples how to write external ZDLL mod-
ule. First example show how to accept several arguments from MiniM
environment and create return value. Second example show how to call
from ZDLL module to MiniM environment to evaluate MUMPS expression.
And third example show how to execute line of MUMPS commands and
change current state of MiniM environment. Next will be described exam-
ples and function prototypes step-by-step. Assumed that programmer have

58 CHAPTER 3. TECHNICAL ARTICLES

base knowledge about functions, pointers to function, structures, pointers to
structure, arrays of structure, export functions and dll linkage.

int WINAPI DllEntryPoint(HINSTANCE hinst,

unsigned long reason, void* lpReserved)

This function is called by Windows environment on dll loading and un-
loading and in this function programmer must do any actions about initial-
ization and deinitialization od ZDLL module. In this function context MiniM
environment in inaccessible.

#ifdef __cplusplus

extern "C"

#endif

__declspec(dllexport) ZDLLFUNC* __stdcall ZDLL (void)

{

return functions;

};

Here is exported function with predefined prototype and name. This
function will be search by MiniM process to get available functions to execute.
ZDLL module can export any other functions too, but all other functions are
unused by MiniM. If ZDLL module does not export this function, this ZDLL
module cannot work with MiniM. In example function return pointer to array
or records with suppported function definitions. And example use statis
array of records placement. Also ZDLL module can use dynamic memory
allocation, but also must free this memory. Memory with array of definition
records must be available all time ZDLL module is loaded.

ZDLLFUNC functions[] =

{

{ concat, "concat"},

{ NULL, NULL }

};

Here is described array or records with first element to define pointer
to function and name of function to call from MiniM environment. Second
array element is an empty record to define end of functions definition. This
array can define any number of functions but last element must be an empty
record.

3.2. ZDLL MODULE DEVELOPMENT 59

int __stdcall concat(ZDLLCB* cbfunc, MINIM_STR* result,

int argc, MINIM_STR** argv)

Pointer to this function is used in ZDLL function definition and can be
called from MiniM environment by name ”concat”. This name is specified
in definition array. Name as string and name as real function name in code
can differs, MiniM use only pointer to function. Function accept four formal
parameters and on call from $zdll() function get real arguments passed count
and array of arguments values.

MINIM_STR a;

MINIM_STR b;

Function use temporary structures to convert data into strings. MiniM
does not guarantee format of values been passed - string or a number and
ZDLL function must cast data to need format to use.

cbfunc->GetStr(argv[0], &a);

cbfunc->GetStr(argv[1], &b);

Here function calls MiniM environment to convert data into string format.
If data has been numbers, MiniM creates canonical string representation, if
data has been strings, MiniM hold this values as is.

if(a.len + b.len > MINIM_STR_MAX)

{

return 1;

}

Here function check that result does not exceed maximum allowed length.
If this occurs, function return nonzero result and in this case MiniM function
$zdll() generates an error <FUNCTION>. Function of ZDLL module cannot
access memory over allocated. If dll module crash MiniM process, locking
objects, shared data and transactions will not be lost, all internal data will
be cleared by guardian process, but other process working and process state
restoring after crashing is impossible.

memcpy(result->data, a.data, a.len);

memcpy(result->data + a.len, b.data, b.len);

60 CHAPTER 3. TECHNICAL ARTICLES

Here function create result as concatenation of data from source formal
parameters, copy first data and next second data.

result->len = a.len + b.len;

Function declare how much bytes is used by result.

return 0;

Fucntion return zero to indicate all done and function finished success-
fully.

So, function from first example can be called from MiniM environment
as written in file exam1.rsa:

$zdll("call","exam1.dll","concat",1234,"abcd")

Here example demonstrate that MiniM does not change passed values
format and data can be string and numbers and if function requires special
format, function must convert data. On the other side, programmer can
decide need conversion or not.

Next is described second example without elemend been described above,
such as definition export.

int __stdcall getdate(ZDLLCB* cbfunc, MINIM_STR* result,

int argc, MINIM_STR** argv)

This is function, really does not used any passed arguments.

MINIM_STR expr;

Function use temporary data to call MiniM environment.

expr.len = sprintf(expr.data, "$zd($h,13)");

Function create MUMPS expression to evaluate later and create bot byte
sequence and byte sequence length.

cbfunc->Eval(&expr, result);

3.2. ZDLL MODULE DEVELOPMENT 61

Function call MiniM environment to evaluate expression and get result.
Here function use the result variable directly to return evaluated result as
$zdll() function return.

return 0;

Function return zero value to indicate successful execution. In real appli-
cations function must check ErrStr function return and check that was not
any errors in MiniM environment while expression evaluates. It is recom-
mended to check MiniM process state after each call MiniM environment,
or to check return values of functions Eval and Execute. If this return
value is ZDLL CALLBACK DONE, functions complete successfully, other-
wise functions return predefined error code as ZDLL CALLBACK SYNTAX,
ZDLL CALLBACK ERROR or ZDLL CALLBACK UNDEFINED. If argu-
ments passed been formed incorrectly, functions return an error code as
ZDLL CALLBACK PARAMETERS.

Routine in file exam3.rsa contains example how to call this ZDLL func-
tion:

$zdll("call","exam2.dll","getdate")

Here $zdll() function does not pass any additional arguments.

Next is described third example without parts been described above such
as function definition.

int __stdcall set(ZDLLCB* cbfunc, MINIM_STR* result,

int argc, MINIM_STR** argv)

This function to call from MiniM environment really does not use any
arguments passed.

MINIM_STR str;

Function use temporary data to create line of code to execute.

str.len = sprintf(str.data, "s a(1)=1");

62 CHAPTER 3. TECHNICAL ARTICLES

Function create line of code to execute as byte sequence and mark total
bytes used length. Function form bytes sequence in data field and total length
in len field.

cbfunc->Execute(&str);

String created above is passed to execute in MiniM environment as a line
of MUMPS commands.

Note for ZDLL module programmers: while MiniM environment call func-
tions from ZDLL module, the result points to the stacked structure and inside
recursive calls MiniM -> ZDLL -> MiniM -> ZDLL programmers can use
data in result variable safely.

While MiniM execute callback functions Execute, MiniM creates new
stack level like for a xecute command. And all local variables been cre-
ated by the new command, are lost on return from Execute and stack level
is restored.

All cakkback functions UserFunc, UserDo, ReadLocal, WriteLocal, Read-
Global, WriteGlobal, KillLocal, KillGlobal, which can be named as low-level
callback functions, does not creates new stack level to execute. And, this
functions return error code defined as:

#define ZDLL_CALLBACK_DONE (0)

#define ZDLL_CALLBACK_SYNTAX (1)

#define ZDLL_CALLBACK_PARAMETERS (2)

#define ZDLL_CALLBACK_ARGC (3)

#define ZDLL_CALLBACK_UNDEFINED (4)

#define ZDLL_CALLBACK_ERROR (5)

#define ZDLL_CALLBACK_HALT (6)

Low-level functions table:

UserFunc Evaluate user function written in MUMPS and re-
turn value.

UserDo Call subroutine written in MUMPS and does not
return value.

ReadLocal Reads local variable value.
WriteLocal Writes or creates local variable value.
ReadGlobal Reads global variable value.
WriteGlobal Writes or creates global variable value.

3.2. ZDLL MODULE DEVELOPMENT 63

KillLocal Removes local variable with subscripts.
KillGlobal Removes global variable with subscripts.
SetTEST Return current and sets new value of system vari-

able $test
OrderLocal Return $order function result for local variable
OrderGlobal Return $order function result for global variable
IncLocal Increment local variable by 1 and return result
IncGlobal Increment global variable by 1 and return result
DataLocal Return $data function result for local variable
DataGlobal Return $data function result for global variable

Return values table:

ZDLL CALLBACK DONE - Action done successfully.
ZDLL CALLBACK SYNTAX - One or mode argument have a syntax

error.
ZDLL CALLBACK PARAMETERS - One or more passed arguments

have impossible or unsupported values.
ZDLL CALLBACK ARGC - Have been specified impossible arguments

or subscripts count.
ZDLL CALLBACK UNDEFINED - On read been detected that variable

have undefined value.
ZDLL CALLBACK ERROR - Other error been detected.
ZDLL CALLBACK HALT - Command HALT was reached in MiniMono

context, application must exit and unload library MiniMono.dll

To call user function using UserFunc string with function name must
starts with characters ”$$”. For example, to call user defined function
$$funcˆcbfunc with first argument as 5555, sample code can be as follows:

char* name = "$$func^cbfunc";

MINIM_STR result;

MINIM_STR arg;

cbfunc->SetInt32(5555, &arg);

MINIM_STR* argv[1];

argv[0] = &arg;

cbfunc->UserFunc(name, 1, argv, &result);

To call user defined subroutine using UserDo string with subroutine name
must contain only subroutine name. For functions UserFunc and UserDo
name of routine can be omitted, in this case MiniM environment use current
routine if one is present in cuyrrent execution context, for example:

64 CHAPTER 3. TECHNICAL ARTICLES

char* name = "func";

MINIM_STR arg;

cbfunc->SetInt32(5555, &arg);

MINIM_STR* argv[1];

argv[0] = &arg;

cbfunc->UserDo(name, 1, argv);

Low level callback functions does not require double quoting of subscripts
and arguments unlike of Eval and Execute functions to create correct MUMPS
syntax. Low-level callback functions use arguments been passes as is. If been
passed string as subscript value, MiniM environment check this value can be
a number and use internal conversion as need.

Functions ReadGlobal, WriteGlobal and KillGlobal does not required database
name. If instead of database name been passed NULL value or an empty
string, MiniM process use current database. The circumflex character (ˆ)
does not required in the global name.

If MiniM environment detect that ReadLocal or ReadGlobal functions calls
to variable with undefined value, this functions returns

ZDLL_CALLBACK_UNDEFINED

error code and variable result does not contain any value and does not
changed. Otherwise MiniM environment writes value been read into result
and return error code ZDLL CALLBACK DONE. MiniM return value in the
same format (string or a number) such as this value been stored in a variable.
To convert value into need format programmer must use convertion functions
GetDouble, GetInt32, GetInt64, GetStr.

Example how to read and write global variable ˆGlobalName(”abc”):

// write variable

MINIM_STR value;

value.len = sprintf(value.data, "%s", "abcdef");

MINIM_STR index;

index.len = sprintf(index.data, "%s", "abc");

MINIM_STR* argv[1];

argv[0] = &index;

char* name = "GlobalName";

int ret = cbfunc->WriteGlobal(name,

NULL, 1, argv, &value);

3.3. ZDEVICE MODULE DEVELOPMENT 65

// read variable

ret = cbfunc->ReadGlobal(name,

NULL, 1, argv, &value);

If process changes value of system variable $test using function SetTEST,
value of svn test value is compared with zero. If it is zero, MiniM environment
sets $test to 0, otherwise sets to 1.

3.3 ZDEVICE module development

MiniM Database Server implements extending internal built-in device types
with user-defined device types in external dynamic link libraries. In general,
this external defined devices are named as z-devices or ZDEVICE module.

To create z-device module programmer must use any compiler to create
Win32 dll and implement z-device as set of functions with special prototypes.
MiniM installer have some examples created with C++.

DLL module must export one function with predefined prototype and
with nmae GetZDevice. This function must return to MiniM environment
pointer to structure with pointers to functions as handlers of device events.
All function prototypes are defined in the header file zdevice.h.

After z-device been created, MiniM process can use this device as such as
other or as built-in MiniM device. To use z-device it is required to place dll
with z-device implementation in the /bin subdirectory of MiniM installation.
Device type must be the dll name without extension and dll name have to
starts with the ”Z” character. For example, if programmer plans to use
device

s devname="|ZDEV1|name"

the MiniM process will search the zdev1.dll file in the /bin subdirectory.

Z-device module must implement at least one function, the open device
event handler. Other event handlers can be implemented in discretion od
z-device developer and are optional. For example, device can not implement
system variables $X and $Y support. All unimplemented event handlers
must have NULL pointers.

After this zpecial dll file is placed into the /bin subdirectory, all MiniM
processes can open and use this device, it is not required any special regis-
tration. Dynamic link library is loaded into process’s address space on first

66 CHAPTER 3. TECHNICAL ARTICLES

device with this type been open and is freed if last device with this type is
closed. And, if process use several devices of this type simultaneously, dll
module is unloaded only after all this devices be closed.

Dynamic link library for z-device must be created very like as ZDLL
module and can implement both z-device and ZDLL interfaces. If application
requires very frequently open and close z-device, application can previously
load the library into memory by call to $zdll(”load”) function before using
and call to $zdll(”unload”) function after using, if this dll implement both
ZDLL and ZDEVICE interfaces. Between this calls library stay loaded and
device opening and closing can be faster. If dll does not require to implement
any ZDLL functionality, dll can export an empty function definition array.

Functions of z-device event handlers accept at least one parameter with
callback functions and accepts data in the same conventions as a ZDLL mod-
ules do. While handler funstion still active, it can call MiniM environment
and convert data.

Interface definition

Indetface of z-device is defined by one structure with pointers to functions
handlers or events occured with the device been implemented. Functions ac-
cepts al least two parameters, it is pointer to structure with callback functions
to call MiniM environment

ZDLLCB* cbfunc

and current device instance context, which creates the open device handler

ZDEVICEHANDLE hDevice

Current device context is created on device open event. Value of the
hDevice must not be NULL even if the device events does not use current
device context. If open habdler return a NULL value, MiniM process suppose
device opening failed and device have not been opened. MiniM process does
not use this value in any case except passing to event handlers. This value
is required to identify current device instance from other possible device
instances can be created simultaneously. ZDEVICE interface is oriented to
support several device instances of one device type.

Function habdlers of device events must return an error code to indicate
success. If return code is equal to ZDEV NO ERROR, MiniM suppose event
handler executes successfully and process continues execution. If return code
is equal one of the following error code, MiniM process will generate an
appropriate error:

3.3. ZDEVICE MODULE DEVELOPMENT 67

Error code Error to generate
ZDEV ERR READ <READ>
ZDEV ERR WRITE <WRITE>
ZDEV ERR ENDOFFILE <ENDOFFILE>
ZDEV ERR DEVICE <DEVICE>

If handler return any other error code, MiniM process use this code to
construct the error text and starts error text with ”ZDEVICE” characters
and with following code, for example if event handler return error code as
456, MiniM process will generate an error <ZDEVICE456>.

All event handlers except device opening handler are optional. If ZDE-
VICE developer suppose that this ZDEVICE does not implement any func-
tionality, this event handler must be NULL pointer. And if MiniM process
calls unimplemented event, process do default action for this event. For ex-
ample, if write handler WriteStr is not implemented, all write string events
lost data and if ZDEVICE does not implement reading value of system vari-
able $X for this device, process return by default value 0.

Functions for Open, Close and Use events accepts options if ones have
been specified in the MUMPS code. Options are passed as array of pointers
to names and values of options and as count of pairs been passed. This array
contains names and values strictly sequantially, as a name with the followed
value. If in selected position option has been skipped, this pair is a two empty
pointers, name and value. If option have been specified without name, name
pointer is a null pointer with not-null value. If option have been specified as
name only, name is not null and value is null. Note that counter specify a
pairs count and is doubled count of pointers been passed. The name and the
value are passed in internal MiniM representation as this value have been
evaluated and ZDEVICE develooper must convert data into need format to
use. ZDEVICE developer can independently define any options meaning,
using option by position or by name and what options values does.

If device have assigned routine to handle mnemonics, menonics are han-
dled by MiniM process. By default some of device types can have mnemon-
ics assigned using minim.ini configuration file. And z-devices have not any
mnemonic routine assigned by default.

The Open event handler function called by open command to open one
more device with this type. Function accepts MiniM environment context
with callback functions, options and new device name have been specified
in the open command. Device name is a string which folows by the device
type. For example, if MUMPS code opens device ”|ZDEV1|abcd”, event

68 CHAPTER 3. TECHNICAL ARTICLES

handler got string ”abcd” (zero terminated) as a device name. Next device
identification is made by full name including device name and device type.

ZDEVICE developer can use device name been passed at his own discre-
tion. In any MiniM process all devices are created separately and belongs
to process only, not to server or to other process. ZDEVICE developer must
allow creation device for other processes with the same name as different
objects.

MiniM environment calls Close event handler id MUMPS code closes this
device. After closing MiniM process free all internal data about this device
and free this ZDEVICE module if no more this devices still opened.

MiniM environment calls Use event handler on the use command and
pass specified in MUMPS code options. At this moment this device instance
can be current and stands a current device after use command handled and
Use handler return control.

MiniM environment calls ReadStr event handler on the read command
in read string form. Event handler accept read length limit and timeout if
ones been specified. If read length limit or timeout has not been specified,
MiniM environment pass -1 values. Timeout is passed as integer and contains
milliseconds but MUMPS command specify timeout in seconds, this recalcu-
lation is done automatically by MiniM to conform common MiniM timeouts
rules. ReadStr event handler must read data from actual data source and
place result into parameter

MINIM_STR* str

Format of this value (string or number) is defined by ZDEVICE developer
and is used by MiniM as is.

The ReadChar event handler is called by MiniM environment to handle
read command in read one character form. This event handler accepts time-
out to read in milliseconds or value -1 if timeout does not been specified
in MUMPS code. This event handler must read one byte from actual data
source and place the code of character into parameter

int* result

MUMPS language use conventions that read one character command
must return code -1 on unsuccessful reading or if timeout have been ex-
pired. On successful read event handler must return the code between 0 and
255 inclusively.

3.3. ZDEVICE MODULE DEVELOPMENT 69

In the special case that ZDEVICE developer suppose that read command
for read one character for this device type should return value over standard
interval of codes, this ZDEVICE developer should specify this feature in
documentation for this new device.

Event handlers for ReadStr and ReadChar events must detect reading out-
side available data and return error code ZDEV ERR ENDOFFILE in this
case. And MiniM environment in this case analize current process context
and can ignore this return code and MUMPS code must check $zeof vari-
able or process generate an error <ENDOFFILE> and MUMPS code must
handle this error.

ZDEVICE developer must understand that read command can write to
the device. This cases are read command in the following forms:

read "any string"

read ?expr

read !

read #

and to implement this forms ZDEVICE developer must implement appropri-
ate write handlers, otherwise by default MiniM environment lost this data.
Note that read command with number as an argument is deprecated by the
MUMPS standard, for example:

USER>r 123

<SYNTAX> :READ: *r 123

MiniM environment calls WriteStr event handler to handle write com-
mand in the write string form. MiniM pass string to write in the parameter

MINIM_STR* str

and data are passed in MiniM internal format (string or a number) as is and
ZDEVICE developer must convert data to need format.

MiniM environment calls the WriteChar event handler on the write com-
mand in the write one character form. Here can be passed negative value too.
What does it mean and how to handle negative values ZDEVICE developer
must suppose in dependent of the device type.

MiniM environment calls the WriteNL event handler to handle the write
New Line (write !) command. What does it mean for this device ZDEVICE
developer must suppose in dependent of the device type.

70 CHAPTER 3. TECHNICAL ARTICLES

MiniM environment calls the WriteFF event handler to handle the write
Form Feed (write #) command. What does it mean for this device ZDEVICE
developer must suppose in dependent of the device type.

MiniM environment calls the WriteTab event handler to handle the write
tabulation (write ?expr) command. What does it mean for this device ZDE-
VICE developer must suppose in dependent of the device type. This event
handler accepts parameter with value of evaluated expression expr.

The GetX and GetY event handlers must be implemented if this z-device
must support system variables $X and $Y for read. What does it mean for
this device ZDEVICE developer must suppose in dependent of the device
type.

The SetX and SetY event handlers must be implemented if this z-device
must support system variables $X and $Y for assignment. What does it
mean for this device ZDEVICE developer must suppose in dependent of the
device type.

The GetKEY and SetKEY event handlers must be implemented if this
device must support system variable $key for reading and for assignment.
What does it mean for this device ZDEVICE developer must suppose in
dependent of the device type. In the most cases value of $key contains last
characters have been read and assignment does nothing except storing data
until next read command executes.

The GetZEOF event handler must be implemented if z-device must sup-
port system variable $zeof to indicate end of data been reached. This handler
return must be coordinated with ReadStr and ReadChar event handlers from
the point of view of MUMPS developers.

The GetZA and GetZB event handlers must be implemented if this device
must support system variables $za and $zb. What does it mean for this device
ZDEVICE developer must suppose in dependent of the device type.

Event handlers GetKEY, GetZA and GetZB are called by MiniM envi-
ronment on each call to system variables $key, $za and $zb from MUMPS
code. MiniM process does not cache this values and return values must be
determined and calculated on each call been made.

ZDEV1 example

MiniM installer installs as an example how to write read handlers for
z-device exmaple ZDEV1 in the zdevice/example1 subdirectory. This device
generates a random byte sequence in internal data buffer and later return
strings and characters in read handlers. This device is a read only device.

3.3. ZDEVICE MODULE DEVELOPMENT 71

As an example how to use use command options this demo device support
one option with the /POS name for direct positioning in the currently used
buffer, for example

use dev:/POS=123

and this code can reposition current internal read pointer in the buffer and
MUMPS code can reread data again.

For illustration how this device can be used is intended routine ZDEV1,
which contains actions for read one string (readstr), read one string with
length limit (readlimit), read all data with <ENDOFFILE> error generation
(readtofail), read all data with $zeof handling (readtoeof) and repeatable read
after repositioning (doubleread).

run ; k d run^ZDEV1 w

d readstr

d readlimit

d readtofail

d readtoeof

d doubleread

q

readstr

; read one string

n dev="|ZDEV1|123",str

o dev u dev r str u $p c dev

w "str is ",$l(str)," length",!

q

readlimit

; read one limited string

n dev="|ZDEV1|123",str,limit=1024

o dev u dev r str#limit u $p c dev

w "str is ",$l(str)," length",!

q

readtofail

; read all to <ENDOFFILE> error

n $et="g err"

n dev="|ZDEV1|123",str

o dev u dev f r str

u $p c dev

q

err

72 CHAPTER 3. TECHNICAL ARTICLES

u $p

w "reached ",$ze," error",!

s $ec=""

c dev

q

readtoeof

; read all to $zeof indicator

n dev="|ZDEV1|123",str,zeof=$v("proc",5,0)

o dev u dev f r str q:$zeof

u $p c dev

i $v("proc",5,zeof)

w "reached $zeof",!

q

doubleread

; read one string, rewind and read again

n dev="|ZDEV1|123",str1,str2

o dev u dev r str1 u dev:/POS=0 r str2

u $p c dev

w "strings compared: ",(str1=str2),!

q

Output of this sample routine::

USER>k d run^ZDEV1 w

str is 32767 length

str is 1024 length

reached <ENDOFFILE> :readtofail+4^ZDEV1: error

reached $zeof

strings compared: 1

ZDEV2 example

As a second z-device example MiniM installer installs ZDEV2 example
into subdirectory zdevice/example2. This device is a write-only oriented de-
vice and outputs all data into internal debugging port of Windows using
WinAPI function OutputDebugString. If debugging monitor is run, devel-
oper can see output information about how event handlers work and see
handlers parameters.

Using this device, ZDEVICE developer can check what event handlers
are called on the special read command forms.

3.4. USER-DEFINED Z-FUNCTIONS 73

run ; k d run^ZDEV2 w

n dev="|ZDEV2|123"

o dev u dev

w 67

w *67

w !

w #

w ?67

u $p

c dev

q

Exmaple what can be displayed in the Windows debugging monitor db-
mon.exe:

600: ZDEV2:WriteStr: 67

600: ZDEV2:WriteChar: C (67)

600: ZDEV2:WriteNL

600: ZDEV2:WriteFF

600: ZDEV2:WriteTab 67

3.4 User-defined z-functions

MiniM Database Server implements user-defined z-functions and user-defined
z-variables. Both this thing next described as z-functions, because user vari-
able call in MiniM is equal to user function call with zero arguments.

User-defined z-function is a function with name starts with special charac-
ter ”$” with followed character ”Z” or ”z” and any English letters or digits. If
arter name follows parenthesis, it is user-defined function, otherwise it is user-
defined variable. User-defined z-functions names are used case-insensitive.

Z-function implementation must be written in MUMPS language and
placed into routine with any name starts with characters ”%ZFUNC” case
sensitive. After characters ”%ZFUNC” may follows any English letters or
digits up to 31 symbols in total.

User-defined z-functions calls without routine specification, for example:

w $zmyfunc(123,456)

s a=$zmyext(.b)

74 CHAPTER 3. TECHNICAL ARTICLES

User-defined z-functions cannot use internal MiniM z-functions in this
case MiniM call internal functions instead user-defined code.

In implementation routine %ZFUNCXXX for user-defined z-functions
must be present label with appropriate formal parameters. Label name must
be in upper case only. MiniM process on user-defined z-function call search
routine which starts with %ZFUNC in order index sorting. If process find
routine with need label in upper case, process use this label to call function.
If database contains two or more routines with this label, process use only
first found.

Example. Let it be a routine %ZFUNC001 with content:

ZZVAR

q 123

ZZFUNC(param)

q param

then this can be used as user-defined z-variable ZZVAR and user-defined
z-function ZZFUNC with one argument:

USER>w $zzVar

123

USER>w $zzFunc(789)

789

If user-defined function is used, process use only compiled bytecode. If
compiled bytecode is absent even if source code is present, process generates
an error <NOZROUTINE>. If process found one or more %ZFUNC routines
but label was not found, process generate an error <NOZROUTINE> too.

MiniM use arguments passing to user-defined z-functions in the same
manner as for other user-defined function and may be used formal parameters
with default values and variable-length parameters.

3.5 User-defined z-commands

MiniM Database Server implements extending by user-defined commands.
This command names must starts with the ”Z” or ”z” character and have
different name than implemented by MiniM as built-in commands. User-
defined commands must be implemented as a subroutines in routines with
names starts with ”%ZCMD” characters.

3.5. USER-DEFINED Z-COMMANDS 75

For user-defined command can be used argumentless form and argu-
mented form and argumented command can be implemented with one ar-
gument only. If MUMPS code call this command with several arguments
commadelimited, MiniM environment call one-argument form for each argu-
ment been specified sequentially in left-to-right order.

User-defined command can be used with postconditional expression. In
this case postconditional expression evaluates ones before command execu-
tion independently of arguments count. If postconditional expression evalu-
ates as 0, all arguments are ignored and control is passed to the next com-
mand available.

Z-command implementation must be defined using MUMPS language in
routine with naem starts with ”%ZCMD” characters with optional followed
English letters or digits. Common routine name must be up to 31 characters
length and conform common routine name rules.

Each used user-defined z-command must have appropriate label in the
”%ZCMDXXX” routine in upper case. On execution MiniM process searches
this routine inside available in subscripts collation order. If process does not
find any of ”%ZCMDXXX” routine, process generate an error <NOZROUTINE>
and if in this routines does not found need label, process generates an error
<NOZROUTINE> too.

User-defined z-functions cannot have the same names as MiniM built-
in commands. In this case MiniM compiler use this built-in functions and
built-in functions cannot be redefined.

Label name must be the same as a command name and be in upper
case only. For example, if command is zmycmd, label must be ZMYCMD,
if command is zzshow, label must be ZZSHOW. User-defined commands can
be used case-insensitive, but labels must be in upper case.

Example. Let it be a %ZCMD001 routine with the text:

ZCMD0

w 123,!

ZCMD1(param)

w param,!

and in this case can be used command zcmd0 without argumants and zcmd1
with one argument. For zcmd1 command can be used several arguments and
in this case MiniM calls subroutine ZCMD1ˆ%ZCMD001 for each argument
specified.

76 CHAPTER 3. TECHNICAL ARTICLES

User-defined command can accept only one formal parameter and by value
only.

To use user-defined commands and pass arguments can be specified any
expressions, MiniM process evaluates expressions and pass evaluated values
to subroutine.

3.6 Processes accounts

To configure correctly MiniM Database Server and as a consequence, for
correct functioning, it is required to understand the server policies related to
server processes.

MiniM Database Server includes several processes: service (mnmsvc.exe),
journaling daemon (minimjd.exe), write daemon (minimwd.exe), database
expand daemon (minimed.exe), optional controller to start and stop server
(minimti.exe), and the work processes to implement MUMPS jobs (minim.exe).
MiniM server controller (minimti.exe) is not mandatory for server and used
to run optional utilities by operator.

Main server account for administering is a service account. Service runs
child daemon processes, handle telnet incoming connections and runs child
process and guard child processes. All child processes which are runed by the
service, are under the same account. And, if minim.exe process runs child
process by the job command, child process is under the same account. Also
minim.exe processes can be run directly as console or in the standard batch
mode. And in this case processes are run under the current user account.

All child processes which are runs by the service on the server start
(database transactions check and autostart execute) are runs under service
account too.

In the most cases process accounts are tolerant for MiniM Database Server
still work properly. But in special cases this may require understand accounts
details: 1) network resources usage and 2) server functioning on current user
logoff.

If user logoff, this user account ends and all processes was run under this
account terminates too. If MiniM service was run under this user account,
server terminates. If was run any processes under this user account, this
processes terminates too, for example console processes. If it is need MiniM
Database Server still work after user logoff, it is required to run MiniM service
under the system account and use telnet access. Service account can be setup

3.7. ROUTINE EDITOR KEYSTROKES 77

in Windows Control Panel, applet Services. MiniM server reguires interact
with desktop permission to properly handle incoming telnet connections.

Other possibility to run MiniM Database Server process under the differ-
ent account in console mode is running using special Windows functionality
- go to Windows Explorer, right click on minim.exe with Shift key and select
memu item to run process from selected user.

One of much important task can be working with network resources -
with disks and printers shared resources. It is recommended to create special
Windows user account to run MiniM Database Server and setup account
permissions. Special Windows account for server can recommended to use in
production environment.

One of much important things of Windows accounts is an access to other
applications. For example, if MiniM process reguires access to ODBC driver,
administrator must differentiate User and System ODBC DSN. User ODBC
DSNs are visible under current user account and System ODBC DSNs are
visible for all Windows accounts. Or, in other cases, MiniM process can
require connection to other databases using proprietary connection methods
depended of client account. All this interoperation cases must be checked by
server administrator to correctly setup MiniM Database Server account.

3.7 Routine Editor Keystrokes

Up One line up.
Shift+Up One line up with selection.
Ctrl+Up Scroll up.
Down One line down.
Shift+Down One line down with selection.
Ctrl+Down Scroll down.
Left One character left.
Shift+Left One character left with selection.
Ctrl+Left One word left.
Shift+Ctrl+Left One word left with selection.
Right One character right.
Shift+Right One character right with selection.
Ctrl+Right One word right.
Shift+Ctrl+Right One word right with selection.
PgDn One page down.
Shift+PgDn One page down with selection.

78 CHAPTER 3. TECHNICAL ARTICLES

Ctrl+PgDn Go to end of current page.
Shift+Ctrl+PgDn Go to end of current page with selection.
PgUp One page up.
Shift+PgUp One page up with selection.
Ctrl+PgUp Go to start of current page.
Shift+Ctrl+PgUp Go to start of current page with selection.
Home Go to line start.
Shift+Home Go to line start with selection.
Ctrl+Home Go to text start.
Shift+Ctrl+Home Go to text start with selection.
End Go to line end.
Shift+End Go to line end with selection.
Ctrl+End Go to end of text.
Shift+Ctrl+End Go to end of text with selection.
Ins Switch insert mode - insert on typing or overwrite.
Ctrl+Ins,
Ctrl+C

Copy selection into clipboard.

Shift+Del,
Ctrl+X

Cut selection into clipboard.

Shift+Ins,
Ctrl+V

Paste text from clipboard.

Del Delete one character right of caret.
BkSp,
Shift+BkSp

Delete one character left of caret.

Ctrl+BkSp Delete one word left of caret.
Alt+BkSp,
Ctrl+Z

Undo last editing.

Shift+Alt+BkSp,
Shift+Ctrl+Z

Redo next editing.

Enter,
Shift+Enter,
Ctrl+M

Insert one line.

Tab Insert tabulation.
Shift+Tab Delete left up to prior tabulation.
Ctrl+A Select all text.
Shift+Ctrl+I Indent selection.
Shift+Ctrl+U Unindent selection.
Ctrl+N Open new editor with empty text.
Ctrl+O Open existing routine in new editor.
Ctrl+T Delete current word.
Ctrl+Y Delete current line.

3.8. MINIM SERVER CONNECT 79

Shift+Ctrl+Y Delete up to end of line.
Ctrl+0,
. . .
Ctrl+9

Go to bookmark with this number.

Shift+Ctrl+0,
. . .
Shift+Ctrl+9

Create bookmark with this number.

Ctrl+U Make selection upper case.
Ctrl+L Make selection lower case.
Shift+Ctrl+B Go to next pair parenthesis.
Shift+Ctrl+N Switch selection mode to normal.
Shift+Ctrl+ Switch selection mode to column selection.
Shift+Ctrl+L Switch selection mode to line selection.
Ctrl+F9 Compile current routine.
F9 Continue process execution.
Ctrl+F2 Halt debugged process.
F5 Set or remove debugger breakpoint at current

source location.
Ctrl+Alt+B Show list with currently defined debugger break-

points.
Ctrl+Alt+S Show window with process stack state.
Ctrl+Alt+V Show list of debugged process system variables.
Ctrl+Alt+W Show watches list.
Ctrl+F5 Add new watch.
F8 Continue process execution by one line on current

stack level.
F7 Continue process execution by one line including

nested stack levels.
F4 Continue process execution until current caret lo-

cation or other breakpoint reached.
F6 Switch to pair routine (INT -¿ MAC or MAC -¿

INT)

3.8 MiniM Server Connect

MiniM Database Server provide special module MiniM Server Connect to
connect to server and exchange data implemented as minimsc.dll. This li-
brary can be placed in current client application subdirectory or in any sub-
directory from the PATH environment variable.

In general MiniM Server Connect interface is declared using C language.

80 CHAPTER 3. TECHNICAL ARTICLES

Exmaples how to use minimsc.dll from other languages are optional and
secondary. In real applications developer must decide what coding rules and
data transfer methods must be used. If developer use UNICODE Delphi
developer must correct installed file minimscint.pas, because this file was
developed for ANSI Delphi.

Also developer must use characters encoding convensions to correlate
client side and server side encodings and sorting.

MiniM Server Connect module can be used by client application us-
ing static and dynamic linking. MiniM installs examples to connect to
MiniM from C++ and ObjectPascal (Delphi environment) using static link-
ing. What method must be used - static or dynamic an application developer
must choose too.

Library minimsc.dll is intended to create connection object to cobbect
to MiniM process and interchange data using internal protocol over tcp/ip.
On the client side this protocol handles minimsc.dll and on the server side
special routine ˆ%srv. To activate connection listener it must be started on
the server by command

d ^%srv

In most cases this command can be inserted by default into server au-
tostart script autostart.m. This protocol does not encode data been trans-
ferred. Protocol does not contain conventions about user logins and pass-
words. And is supposed that application developer support special applica-
tion conventions about logins and passords and application-specific connec-
tion options.

Application interface for MiniM Server Connect is declared in the special
header file minimsc.h for C++ language, in special interface unit minim-
scint.pas for ObjectPascal, in minimsc.vb for VB.NET, in minisc.cs for C#
language, for MiniM and for Cache for MUMPS language and in minim-
scj.java + minimscj.dll for Java language implemented as JNI/Win32. For
ActivePerl environment interface is declared inside example file.

MiniM Server connect interface consist of several functions and argument
passing conventions which are much close to standard Windows calling con-
ventions. And, in most cases, if other development tool can interact with
Windows environment and build application, this tool can use minimsc.dll
too. For development environment with ActiveX support MiniM provide
MiniM Server Connect with ActiveX interface too.

3.8. MINIM SERVER CONNECT 81

To identify one connection established this library creates internal con-
nection object identified by special handle HMNMConnect. This object is
created by MNMCreateConnect function and removes by MNMDestroyCon-
nect function. Between this functions connection object still in created but
not connected state. To connect object to server developer must use MNM-
ConnectOpen function and MNMConnectClose function to disconnect from
the MiniM server. Between this functions connection object still in connected
state and application can exchange data, execute commands and evaluate ex-
pressions. Library support creation of several connections and connections
can have the same or different connect options.

All functions to use connection returns an signed integer as an error code.
If function completes successfully, function return value 1, otherwise return
value 0. If function return value 0, developer can get error occured using
MNMGetLastError function.

Values are passed to and from connection as special united structure with
two fields - data bytes and length of bytes been used. Data bytes sequence
can contain any characters including zeroes and nonprintable characters. To
accept data from library functions initialization of structure is unneed. Client
application can use any functions for ASCIIZ strings but terminating zero
bytes does not used by connection, and connection use only bytes been spec-
ified in counter and return values are not zero terminated.

In general, main operations with connection are read expression evalu-
ated, execute line of commands, write variable or kill variable.

Function

int MNMSCPROC MNMRead(HMNMConnect pConnect,

MINIMSTR* Expression,

MINIMSTR* Result);

Data bytes of Expression argument must contain expression in MUMPS
language to evaluate on the server side. And argument Result accepts eval-
uated value.

Function

int MNMSCPROC MNMWrite(HMNMConnect pConnect,

MINIMSTR* VarName,

MINIMSTR* VarValue);

Data bytes of VarName argument must contain name of variable to assign
value of VarValue argument.

Function

82 CHAPTER 3. TECHNICAL ARTICLES

int MNMSCPROC MNMExecute(HMNMConnect pConnect,

MINIMSTR* Commands);

Function executes line of commands in MUMPS language specified in the
Commands argument.

Function

int MNMSCPROC MNMKill(HMNMConnect pConnect,

MINIMSTR* VarName);

This function kill variable specified in VarName with subscripts. Really
server executes kill with argument indirection and variable VarName can
contain several names comma delimited.

Function

int MNMSCPROC MNMExecuteOutput(HMNMConnect pConnect,

MINIMSTR* Commands);

This function executes line of commands in MUMPS language specified
in the Commands variable. If this execution directly or indirectly writes to
current device, all bytes been written are passed to callback function was
specified by MNMSetOutput function. Part of bytes to transfer does not
defined by size or by delimiter and passed by portions as is. This notify
handler can be fired for all data, for several strings or for each byte and
length of portions does not defined. In this mode write commands cannot
write to current device only one byte, with zero code ($c(0)) because it is
command execution terminator. In general, this mode is used to intercept
terminal-oriented output, for example result of routine compilation.

Functions

int MNMSCPROC MNMListGet(MINIMSTR* List,

int pos, MINIMSTR* Element);

int MNMSCPROC MNMListSet(MINIMSTR* List,

int pos, MINIMSTR* Element);

int MNMSCPROC MNMListLength(MINIMSTR* List);

3.8. MINIM SERVER CONNECT 83

are intended for list structures handling. This functions does not requires
MiniM connect is established and been created. Function MNMListGet re-
turn into Element variable one list element from position pos from list List.
Function MNMListSet replaces or adds to list List as element in position
pos value of Element. And function MNMListLength returns count of list
elements are available in the list List.

Function

int MNMSCPROC MNMText(MINIMSTR* Source,

MINIMSTR* Target);

replaces within Source double quote characters and nonprintable characters
to be a correct MUMPS syntax string. Result is returned into Target variable.
If encoding executes successfully, function returns value as nonzero and if
result cannot be placed into Target, result is zero.

Examples how be encoded byte sequences given by C notation:

"abcd" -> "abcd"

"ab\"cd" -> "ab""cd"

"ab\r\ncd" -> "ab"_$C(13,10)_"cd"

Demo examples how MiniM Server Connect are installed into the minimsc
subdirectory with name derived from used language or development tool.

To install file minimsc.dll with real client application any other files are
not required and any registration or registry records are not required.

MiniM Server Connect can be used in several modes to get data from
MiniM server-side process.

Read expression value mode

Client side gets data as result of one function MNMRead call. As an
argument can be used any evaluatable MUMPS expression including simple
constants, one variable name, function calls and compound expression com-
posed using operators. This expression must be constructed using a valid
MUMPS syntax. Function passes text of expression to server and read back
result. Result can contain any characters including zeroes and nonprintable
characters.

Intercept output mode

Client side turn this mode on if call MNMExecuteOutput function. After
return from this function data transfer mode is turned off to simple read

84 CHAPTER 3. TECHNICAL ARTICLES

expression mode. Function passes to server string of commands to execute.
If before last of this commands executes been any write to current device,
this data will be sent to client and fired Output event handler setted up by
function MNMSetOutput.

Connection object fire event handler as data from server been received
and does not distinquish any terminators and does not use any langth to
make parts of data. Fired event handler can accept several write commands
arguments as such as be fired several times to one write command. Client
side of connection use this data as a text data and data cannot contain a
zero byte ($c(0)). Server side send data without waiting any confirmation
from client side. Server can send unlimited bytes count.

In general, this mode is used to intercept output of terminal-oriented
utilities. All output been written is transferred to a client side and passed to
Output event handler.

Data transfer speed for this mode depends on network speed because
server side does not wait client return.

Group read mode

Group read mode is combination of group read event handler setted up
by MNMSetGroupRead function and of execution on the server special sub-
routine to pass data to client:

d wo^%srv(data)

This subroutine pack data and send to a client side. And each of this
portion fire event handler of group read mode. Handler is fired for entire
data portion been sent and data can contain any bytes. Server side does not
wait confirmation from the client and continues work after data been sent.

In general, main target for this data transfer mode is a packet data send
for set of data strings for tables, grids or lists. This mode can be used if one
function must return not single value, but set of values.

Data transfer speed for this mode depends on network speed because
server side does not wait client return.

Callback mode

Callback mode is a combination of callback read event handler setted
up by MNMSetCallback function and of execution on the server side special
function to pass data to client and get back the answer from client:

$$cb^%srv(command)

3.9. MINIM SERVER CONNECT, ACTIVEX 85

Here data passed by the command can contain any bytes including zeroes
and nonprintable characters and passed to callback event as entire portion.
If this data been received by the client side of connection, the callback event
is fired and connection wait result to pass answer back to the server side.
Server side will wait while client side creare the answer.

Both sides, client and server, supports compliance of stacks to execute
callback event handlers and connection allow recursion for callback calls.
After server side accepts appropriate answer, it received answer from client
as return of function been called:

$$cb^%srv(command)

In general, this data transfer mode is used for user query, or control part
of client program and if this controlling can call server side back recursively.

Data transfer speed for this mode not much depends on network speed
because main time is used by waiting responce.

Group read and callback mode are transfered to client data entirely, and
can include any bytes. Callback mode answer can include any bytes too.
What data need to be sent and bytes encoding application programmer can
choose in depends of application developed, for example, strings with delim-
iters or lists in $listbuild() function encoding.

3.9 MiniM Server Connect, ActiveX

ActiveX component library minimscx.dll is an ActiveX interface to MiniM
Server Connect library and converts all function amd data transfer modes
to an OLE automation interface. To work on the client computer it is re-
quired both files minimsc.dll and minimscx.dll must bee installed and file
minimscx.dll must be registered after installation as

regsvr32 minimscx.dll

In depends of installation mode there can be used several switches of
regsvr32 utility, or can be used any other installer who can register ActiveX
library.

MiniMSCX library implements two ActiveX objects:

MiniM.ServerConnect

MiniM.ServerString

86 CHAPTER 3. TECHNICAL ARTICLES

The MiniM.ServerConnect object is intended to implement connection
with MiniM Database Server and MiniM.ServerString is intended to imple-
ment data transfer with OLE automation interface. Some part of MiniM.ServerConnect
functions have doubled functions with Str suffix. If main function use MiniM.ServerString
objects to pass data, simplified functions use simple strings to pass data.
The MiniM.ServerString object can contain any bytes which cannot be rep-
resented in simple strings, for example, lists encoded in $lb() function format.

MiniM.ServerConnect functions

CreateConnect(server, port, database)

server String, specify computer name where work MiniM
Database Server

port Integer, specify port, which is listen by server-side con-
nections, in general it is 5000

database String, specify the database name to make current

Function return value 1 if connection have been crated successfully, other-
wise generate exception. After connection creation this connection still inac-
tive and not in connected state. To connect it is required call Open function.
After end of using connection object must be destroyed by DestroyConnect
function.

Open

Function have no any arguments and return 1 if connection connected
successfully or 0 if connect failed. If before this function real connection have
not been created, function generate an exception about connection object
does not exists.

Close

Function have no any arguments anr returns value 1 if connection de-
sconnected successfully or 0 if disconnect failed. If before this function real
connection have not been created, function generate an exception about con-
nection object does not exists.

DestroyConnect

3.9. MINIM SERVER CONNECT, ACTIVEX 87

Function have no any arguments and return values. If before this function
connection object have been created, this connection object disconnects if
need and is destroyed.

GetLastError

Function have not any arguments and returns one string with last error
occured in connection.

Read(Expression, Value)

Function reads from the server value of expression specified as Expression
and returns value into Value argument. Return value is 1 if function executes
successfully, otherwise return 0.

Expression Object of MiniM.ServerString, specify MUMPS expres-
sion to evaluate

Value Object of MiniM.ServerString, accepts value of expres-
sion after evaluation

Return value Value can contain any bytes including zeroes and nonprint-
able characters, particularly values of lists in $lb() function format.

ReadStr(Expression)

Function is pair to Read function, have one string argument with MUMPS
expression to evaluate and returns string with value.

Expression String with MUMPS expression to evaluate

Return value cannot contain zero bytes.

Write(VarName, VarValue)

Function assigns to variable specified in VarName value specified in Var-
Value. Function returns value 1 if executes successfully and otherwise 0.

VarName Object of MiniM.ServerString, specify variable name in
MUMPS syntax to assign

VarValue Object of MiniM.ServerString, specify value to assign to
variable

88 CHAPTER 3. TECHNICAL ARTICLES

WriteStr(VarName, VarValue)

Function is pair to function Write and accepts arguments as simple strings.
Function return 1 if executes successfully and otherwise return 0.

Execute(Commands)

Function executes specified in Commands argument line of MUMPS com-
mands. Argument Commands must be an object of MiniM.ServerString.
Function return 1 if executes successfully and otherwise return 0.

ExecuteStr(Commands)

Function is pair to function Execute and accepts argument as a simple
string. Function return 1 if executes successfully and otherwise return 0.

ExecuteOutput(Commands)

Function executes line of MUMPS commands specified in the Commands
argument. The Commands argument must be an object of MiniM.ServerString.
Function returns value 1 if executes successfully and otherwise returns 0.
All data server process writes to current device is transferred to client and
fired as parts with undeterminated length on OnTerminalOutput event. This
function differs from Execute by data writes interseption. If function return
control, the data transfer mode is switched back into normal without inter-
ception.

ExecuteOutputStr(Commands)

Function is a pair to ExecuteOutput function and accepts argument as a
simple string.

Kill(VarName)

Function accepts an object of MiniM.ServerString with variable name
specification to kill this variable with subscripts. Subscripts can be defined
as evaluatable expressions using MUMPS syntax. This function execute kill
command with indirection and argument can contein several variable names
to kill and be a comma delimited. Function return 1 if executes successfully
and otherwise return 0.

3.9. MINIM SERVER CONNECT, ACTIVEX 89

KillStr(VarName)

Function is a pair to Kill function and accepts argument as a simple
string. Function return 1 if executes successfully and otherwise return 0.

ListLength(List)

90 CHAPTER 3. TECHNICAL ARTICLES

List Object of MiniM.ServerString, specify value of list, en-
coded as $lb() function format.

Function return integer with number of elements in the List and function
counts defined and undefined list elements.

ListGet(List, Pos, Elem)

Function return value of list List element from position Pos into variable
Elem.

List Object of MiniM.ServerString, threats as a list encoded
as $lb() function format.

Pos Integer, specify element position
Elem Object of MiniM.ServerString, accepts list element’s

value

Function return 1 if executes successfully and otherwise return 0.

ListSet(List, Pos, Elem)

Function creates or replaces list element of List in position Pos with value
of Elem.

List Object of MiniM.ServerString, threats as a list encoded
as $lb() function format

Pos Integer, specify element position
Elem Object of MiniM.ServerString, value to place into list

Function return 1 if executes successfully and otherwise return 0.

Text(Value, Result)

Function decorate string specified in the Value argument to be a valid
string representation in MUMPS syntax.

Value Object of MiniM.ServerString, value to encode
Result Object of MiniM.ServerString, result of encoding

3.9. MINIM SERVER CONNECT, ACTIVEX 91

Function return 1 if executes successfully and otherwise return 0.

TextStr(Value)

Function is a pair to Text function and have simplified interface. Function
accepts and returns simple strings.

Events of object MiniM.ServerConnect

OnTerminalOutput(Value)

Value String, part of data been written to current device while
functions ExecuteOutput or ExecuteOutputStr executes

This event is fired if client side accepts data from server written to current
device while functions ExecuteOutput or ExecuteOutputStr executes. Connec-
tion object does not change bytes received and does not split by terminators
or length. String written cannot contain zero byte ($c(0)) because this byte
is used as an interception mode terminator. After return from ExecuteOutput
or ExecuteOutputStr functions connection object restores data transfer mode
into normal mode without interseption.

OnGroupRead(Value)

Value Object of MiniM.ServerString, entire part of data, been
sent from the server.

An event OnGroupRead is fired on the client on each time server calls

d wo^%srv(value)

And here entire value of value fully collected as byte sequence on the
client and this value is passed to event OnGroupRead. This event is fired
asynchronously and server side does not wait answer from the client. Server
can pass series of data and event will be fired on each passing. Client side is
not synchronized with the server and can handle event when the server side
always pass set of strings and return control. In this event handler context
client side cannot call server again and must return control.

92 CHAPTER 3. TECHNICAL ARTICLES

OnCallback(Command, Answer)

3.9. MINIM SERVER CONNECT, ACTIVEX 93

Command Object of MiniM.ServerString, data sent from the server
to client.

Answer Object of MiniM.ServerString, answer to return from
client to server.

An event OnCallback is fired on the client on each call on the server

$$cb^%srv(command)

And here entire value of command fully collected as byte sequence on
the client and this value is passed as a Command argument of event handler.
When this event is fired, server side stops execution and wait answer or other
command to execute or expression to evaluate. When event handler create
result and return control, connection object return answer been sent to a
server side and server process continues to word and gets answer as return
of function $$cbˆ%srv.

Whithin OnCallback event handler client application can call server again
recursively to evaluate expressions or execute commands and this commands
can call client again. Connection save bot stack contexts for calls server from
client and client from server.

An objects of MiniM.ServerConnect does not limit Command and An-
swer values by format, byte contains or encoding. What does it mean an
application programmer must choose in dependent of application developed.

Functions and properties of MiniM.ServerString

Value

Value is a property of MiniM.ServerString object with type of simple
string. This property is accessible for read and write.

Length

Length is a property of MiniM.ServerString object with type of Integer
and contains real bytes count been used in object. This property is accessible
for read and write. When assigned to value less than 0 property sets to value
0, when assigned to value greater than 32767, property sets to value 32767.

GetAt(Pos)

94 CHAPTER 3. TECHNICAL ARTICLES

Function returns integer as character code at position Pos, where position
is specified by integer. If Pos show outside of bytes are available, function
returns code -1. Character code is returned as integer from 0 to 255.

SetAt(Pos, Code)

Function replaces byte at position Pos to byte with code Code. Arguments
Code and Pos must be an integers. If value of Pos shows outside of bytes are
available, function does nothing.

Add(Val)

Function concatenates to internal object data data of other object Val of
type MiniM.ServerString. Value of Val does not changes. If function executes
successfully, function return value 1, otherwise value 0.

AddStr(Val)

Function concatenates to internal object data bytes of string Val. Value
of Val does not changes. If function executes successfully, function return
value 1, otherwise value 0.

MiniM Database Server installer installs examples how to use objects
MiniM.ServerConnect and MiniM.ServerString in the subdirectory VBS and
examples are made using Visual Basic Script. To execute this examples run
in the console of cmd the command:

cscript.exe //Nologo example1.vbs

All examples are console examples and outputs data to the screen.

3.10 Import / export API

MiniM Database Server implement routines for export and import globals,
routines and bytecode to and from file. This section describes API for pro-
gram export and import.

3.10.1 Global import

Function

$$import^%GI(fname,fmt,.list,show)

Arguments

3.10. IMPORT / EXPORT API 95

fname File name to import globals data from
fmt Globals export format number
list Local variable name (by reference) to accept imported

globals names as subscripts (optional)
show Write (1) or not (0) to current device import report

(optinal, by default 0)

Global formats

Argument fmt can be one of the following:

1 Stream format (Cache or MSM), line feed symbols are
reserved by format.

2 Variable length records format (Cache or MSM), data
and subscripts can contain any characters.

Return value

Function return count of imported globals with different names. If func-
tion fails, return value is 0.

Example

s fname="e:\Data.gsa"

s fmt=2

s show=1

s count=$$import^%GI(fname,fmt,.list,show)

3.10.2 Block global import

Function

$$import^%GBI(filename)

Arguments

filename File name to import globals from.

Return value

If function completes successfully, return value is 0. Otherwise function
return internal error code with following comma and error description. Ex-

96 CHAPTER 3. TECHNICAL ARTICLES

ample:

1,Failed to read or write file specified

2,Invalid MiniM block export file

On this import function does not write anything to current device.

3.10.3 Routine import

Function

$$import^%RI(fname,.rlist,compile,show)

Arguments

fname File name to import routines from
rlist Local variable name (by reference) to write imported

routine names to subscripts (optional)
compile Indicator need (1) or not (0) compile imported routines

after import (optional, by default 1)
show Indicator need (1) or not (0) report import stages to

current device (optional, by default 0)

Return value

Function return number of routines imported.

Example

s fname="e:\matr.rou"

s compile=1

s show=0

s count=$$import^%RI(fname,.rlist,compile,show)

3.10.4 Bytecode import

Function

$$import^%RIMF(fname,.list,show)

Arguments

3.10. IMPORT / EXPORT API 97

fname File name to import bytecode from
list Local variable name (by reference) to write imported

bytecode names as subscripts (optional)
show Indicator report (1) or not (0) import stages to a current

device (optional, by default 0)

Return value

Function return number of bytecodes have been imported.

Example

s fname="e:\query.mmo"

s show=1

s count=$$import^%RIMF(fname,.list,show)

3.10.5 Globals export

Function

$$export^%GO(source,fname,descr,fmt,show)

Arguments

source Variable name (local or global) which subscripts con-
tains globals names to export

fname File name to export globals to
descr Export description (stored in the file)
fmt Export format number
show Report (1) or not (0) export stages to current device

(optional, by default 0)

Export formats

1 Format Cache, stream, line feed characters are used by
format

2 Format Cache, variable length records, data and sub-
scripts can contain any characters

3 Format MSM, stream, line feed characters are used by
format

98 CHAPTER 3. TECHNICAL ARTICLES

4 Format MSM, variable length records, data and sub-
scripts can contain any characters

If description contains only one character circumflex (ˆ) and format is 1
or 3, export function creates special header as autoimport header. This file
after export can be imported later from OS command line:

minim.exe < globalexport.gsa

Return value

Function return number of globals exported.

Example

s names("^Data")=""

s names("^Global2")=""

s fname="e:\gdata.gsa"

s descr="Daily export"

s fmt=4

s show=0

s count=$$export^%GO($na(names),fname,descr,fmt,show)

3.10.6 Block global export

Function

$$export^%GBO(name,fname,descr)

Arguments

name Local or global variable name which subscripts contains
globals names to export.

fname File name to export globals to.
descr Description, this text stored in the export file.

Return value

If function executes successfully, return value is 0. Otherwise function
return nonzero value with internal error code and followed comma and error
text, for example:

3.10. IMPORT / EXPORT API 99

1,Failed to read or write file specified

2,Invalid MiniM block export file

Example how to use block global export:

s gnames("Data")=""

s gnames("Ind")=""

s filename="e:\data.g"

s comment="Daily export"

s err=$$export^%GBO($na(gnames),filename,comment)

This function does not write anything to current device.

3.10.7 Routine export

Function

$$export^%RO(source,fname,descr,show)

Arguments

source Local or global variable name which subscripts contains
routine names to export.

fname File name to export routines to.
descr Export description, stored in the file.
show Indicator report (1) or not (0) export stages to current

device (optional, by default 0).

If description contains only one character of circumflex (ˆ), export func-
tion writes the special header for autoimport. Later this file can be imported
from command line as:

minim.exe < routineexport.rsa

Return value

Function return number of exported routines.

Example

100 CHAPTER 3. TECHNICAL ARTICLES

s rounames("query")=""

s rounames("order")=""

s show=0

s descr="Daily export"

s fname="e:\routines.rsa"

s count=$$export^%RO($na(rounames),fname,descr,show)

3.10.8 Bytecode export

Function

$$export^%ROMF(fname,.rounames,descr,show)

Arguments

fname File name to export bytecodes to.
rounames Local variable name (by reference) which subscripts con-

tain bytecode names to export.
descr Description, stored in the export file.
show Indicator, report (1) or not (0) export stages to current

device (optional, by default 0).

Return value

Function return number of bytecodes have been exported to file.

Example

s rounames("query")=""

s rounames("order")=""

s descr="Daily export"

s show=0

s fname="e:\routines.mmo"

s count=$$export^%ROMF(fname,.rounames,descr,show)

3.11 Routine Change API

MiniM Database Server implements special API to change routines and get
special information about routines. Subroutines are placed into special sys-
tem routine ˆ%R. Subroutines uses routine names which can contain routine

3.11. ROUTINE CHANGE API 101

types as routine name extensions. If extension does not specified, subrou-
tines assumes INT type. Routine names are case sensitive but routine types
are not. On error subroutines return value of 0.

Next examples uses routine first.inc with the following content:

; header line

w "Hello from include",!

w 1234,!

Load routine lines into variable

Prototype:

s err=$$LOAD^%R(rouname,$na(text))

Subroutine writes lines of routine rouname from database storage into
specified local or global variable text with numeric subscripts. Subroutine
does not writes special information. Before execution subroutine clears text
variable.

Example:

USER>s err=$$LOAD^%R("first.inc",$na(rou("rou")))

USER>w

err=1

rou("rou",1)=" ; header line"

rou("rou",2)=" w "Hello from include",!"

rou("rou",3)=" w 1234,!"

Save routine lines from variable

Prototype:

s err=$$SAVE^%R(rouname,$na(text))

Subroutine creates or overwrites routine with lines from subscripts of
specified in text local or global variable. Subroutine uses lines in index order
as they are follows in the text variable, and integer numeric subscripts are
not mandatory.

Example:

102 CHAPTER 3. TECHNICAL ARTICLES

USER>s rou("a")=" ; comment"

USER>s rou("b")=" w 1234,!"

USER>s rou("c")=" w 7896,!"

USER>s err=$$SAVE^%R("first.inc",$na(rou))

USER>w

err=1

rou("a")=" ; comment"

rou("b")=" w 1234,!"

rou("c")=" w 7896,!"

After execution this code creates routine first.inc with the following con-
tent:

; comment

w 1234,!

w 7896,!

Change line in routine

Prototype:

s err=$$SETLINE^%R(rouname,lnum,line)

Subroutine rewrites in the routine rouname line with number lnum by
value of line. Lines in lnum counts from 1.

Example:

USER>s err=$$SETLINE^%R("first.inc",1," ; changed comment")

After execution this subroutine routine first.inc got the following content:

; changed comment

w 1234,!

w 7896,!

Get number of lines

Prototype:

s err=$$GETCOUNT^%R(rouname)

3.11. ROUTINE CHANGE API 103

Subroutine returns number of lines in the routine rouname.

Get one line of routine

Prototype:

s err=$$GETLINE^%R(rouname,lnum,.line)

Subroutine return into the line value of line of routine rouname with
number lnum. Lines in lnum counts from 1.

Example:

USER>s err=$$GETLINE^%R("first.inc",2,.line)

USER>w

err=1

line=" w 1234,!"

Insert line into routine

Prototype:

s err=$$INSLINE^%R(rouname,lnum,line)

Subroutine inserts one line into routine rouname from position lnum and
with content of line. All prior available lines from position lnum shifts by
one. Lines in lnum counts from 1.

Example:

USER>s err=$$INSLINE^%R("first.inc",2," #; second comment")

After execution this subroutine routine first.inc got the following content:

; changed comment

#; second comment

w 1234,!

w 7896,!

Removing one line from routine

Prototype:

104 CHAPTER 3. TECHNICAL ARTICLES

s err=$$DELLINE^%R(rouname,lnum)

Subroutine removes in the routine rouname one line of code at position
lnum. All available lines followed by this line shifts by one position. Lines in
lnum counts from 1.

Example:

USER>s err=$$DELLINE^%R("first.inc",3)

After execution this subroutine routine first.inc got the following content:

; changed comment

#; second comment

w 7896,!

Get routine modification timestamp

Prototype:

s hor=$$DATE^%R(rouname)

Subroutine returns date and time of routine rouname change timestamp
in the $horolog system variable format. In the case this routine does not
exists, subroutine returns an empty string.

Example:

USER>w $$DATE^%R("first.inc")

62136,59140

Get bytecode modification timestamp

Prototype:

s hor=$$BCDATE^%R(rouname)

Subroutine returns date and time of bytecode for routine rouname change
timestamp in the $horolog system variable format. In the case this bytecode
does not exists, subroutine returns an empty string.

Example:

3.11. ROUTINE CHANGE API 105

USER>w $$BCDATE^%R("first.inc")

USER>w $$BCDATE^%R("%MPP")

62131,58917

In the MiniM Database Server routine changes does not affect to compiled
bytecode immediately and subroutines of the ˆ%R routine does not change
bytecode. To compile routines MiniM Database Server implements special
subroutine

d compile^%RCOMPIL(rouname)

Subroutine does not compile INC routines. If routine have the MAC
extension, this subroutine call macro preprocessor before compilation and
produces the INT routine. Next routine compiles into executable bytecode.
While subroutine works, all messages with errors writes into current output
device.

106 CHAPTER 3. TECHNICAL ARTICLES

Chapter 4

CHUI Utilities

CHUI is an abbreviation of CHaracter User Interface. It is an applications
for interactive alphanumeric environment, for example console or telnet. Ap-
plications use one screen to display text with formatting, with possible color
decoration and with possible pseudographic symbols.

CHUI utilities can be used with local console access and with remote
telnet access from any other computer connected via tcp/ip network. Utilities
traditionally made in very simple interface to execute simple actions in any
possible situation. CHUI utilities in most cases have not rich interface and
are only action-oriented.

CHUI utilities are only simple interface to internal small applications
which are runs on the server, not on the client side. And administrator ot
other operator must understand what disks, directories and files are used -
it is resources of server only or visible from server. And, of course, server
process must have enough permission to access this resources.

4.1 %BACKUP

Utility ˆ%BACKUP provided for backup one or more or all databases of
MiniM Database Server.

Usage

do ^%BACKUP

Utility offer to choose backup type - full or differential. This utility use
hot backup and can be used with active processes in transaction states.

107

108 CHAPTER 4. CHUI UTILITIES

MiniM Backup utility.

Select backup type:

1) Full backup

2) Differential backup

Select option:

Utility wait operator responce - 1 or 2 and if entered other alternative,
utility stop working.

Next utility offer to choose databases to backup

Select databases to backup.

1) All databases

2) Selected databases

Select option:

With selection 1 (All databases) utility will backup all databases config-
ured and have not Autocreate indicator (Autocreate = 0).

If operator choose 2 alternative (Selected databases), utility list all avail-
able databases and offer to select database numbers to backup.

List of available databases:

1) USER 2) %SYS 3) TEMP

Select db number to add to backup:

After selection database by number this database is placed into backup
list and utility offer to select one more database.

List of available databases:

1) USER 2) %SYS 3) TEMP

Select db number to add to backup: 1

List of selected databases:

USER

List of available databases:

2) %SYS 3) TEMP

Select db number to add to backup:

If operator select unexistent number (or simply press Enter) utility ends
database selection. If no any databases selected, utility stop working. Oth-
erwise utility offer to enter file name to save backup.

4.1. %BACKUP 109

List of selected databases:

USER

List of available databases:

2) %SYS 3) TEMP

Select db number to add to backup:

Enter file name to backup to:

If operator enter empty string, utility stop working. File name entered
must be accessible from server. Utility have no limitation about file name
or extension and operator can enter unexisting directories. Utility check
directory and create ones if need.

Next utility offer to select journal operation to do after backup:

Journal truncate option:

1) Truncate journal

2) Keep journal as is

Select option:

On selection 1 (Truncate journal) utility removes all journal records be-
fore most earlier for current opened transactions. If operator select 2 (Keep
journal as is) utility does not make any operations with journal records.

Next utility offer to select reporting option.

Report option:

1) Make report

2) No report

Select option:

If operator select 1 (Make report) utility will make detailed report of all
what happens.

If operator select option Make report. utility ask file name to write report.

Report option:

1) Make report

2) No report

Select option: 1

Enter file name to print backup report to:

110 CHAPTER 4. CHUI UTILITIES

If operator enter empty file name, utility make detailed report not to file,
but to current screen.

Report content is dependent of actions performed, operator selections and
time to execute backup stages can differs depending of data available. For
example, if operator select differential backup for one USER database, report
can seems like:

Start backup modified databases.

Start backup modified database USER

Start finish backup phase.

Finish backup USER

Backup done successfully.

4.2 %DBCLEAN

Utility ˆ%DBCLEAN performs database blocks scan, searches unused space
in blocks and cleans this space.

Usage

do ^%DBCLEAN

Utility offer to select database from available databases list to cleanup.

MiniM database cleanup utility

Utility cleans unused database space.

All used data will not be touch.

Available database list:

1) USER 2) %SYS 3) TEMP

Select database number to clean:

If operator choose unexisting alternative (or simply press Escape or Enter)
utility stop working. Otherwise utility start to clean database.

Utility reads database blocks sequentially, but changes only some block
types, which may have unused space. Each block before read is locked to
write.

Time to work depends of number of pages in datafiles. Utility reads all
pages into page cache and can displace pages already read by other processes

4.3. %DBCRC 111

to walk globals and this processes reguires reread displaced pages again.
MiniM Database Server use LRU page caching algorithm and checking can
devaluate pages used.

Sample utility screen:

TEMP>d ^%DBCLEAN

MiniM database cleanup utility

Utility cleans unused database space.

All used data will not be touch.

Available database list:

1) USER 2) %SYS 3) TEMP

Select database number to clean: 3

Cleanup database TEMP

Database TEMP contains 128 blocks.

Cleanup utility ends.

Utility may be run from any database and for any database which have
write access.

4.3 %DBCRC

Utility ˆ%DBCRC is designed to check datafiles pages using cyclical redun-
dancy check.

Usage

do ^%DBCRC

Utility offer to select database from available databases list to check.

MiniM database CRC check utility

Available database list:

1) USER 2) %SYS 3) TEMP

Select database number to check:

112 CHAPTER 4. CHUI UTILITIES

If operator choose unexisting alternative (or simply press Escape or Enter)
utility stop working. Otherwise utility start to check datafiles pages.

Cyclical redundancy check is present in each datafile page and is created
on write to datafile. Checking allow to find store errors in used filesystem or
disk phisical errors, is page stored correctly or not.

Time to work depends of number of pages in datafiles. Utility reads all
pages into page cache and can displace pages already read by other processes
to walk globals and this processes reguires reread displaced pages again.
MiniM Database Server use LRU page caching algorithm and checking can
devaluate pages used.

If utility detect CRC errors, utility display information about error de-
tected. This problem is related to all database and administrator must check
the reason disk hardware failure and restore databases from backup.

4.4 %DBSIZE

Utility ˆ%DBSIZE display current database file in megabytes and grows limit
and can expand current database volume.

Usage

do ^%DBSIZE

Utility offer to select option to perform - show current database size or
add datafiles space.

USER>d ^%DBSIZE

MiniM Show database size utility

Select utility option:

1) Show current database size and limit

2) Extend current database size

Select option:

If operator choose alternative 1 utility show current database sizes and
currently defined grows limits. All values are shown in megabytes.

Before show list utility offer to enter optional file name to store report.
If name is not an empty string, utility store report to file specified.

After execution utility offer to enter option again. Sample of utility screen:

4.4. %DBSIZE 113

MiniM Show database size utility

Select utility option:

1) Show current database size and limit

2) Extend current database size

Select option: 1

Enter file name to print to (optional):

Database Size (MB) Limit (MB)

-------- ---------- ----------

USER 11 unlimited

%SYS 1 1024

TEMP 6 1024

Select utility option:

1) Show current database size and limit

2) Extend current database size

Select option:

If operator select option 2, utility show list of available databases and
offer to select database to expand.

Next utility offer to enter number of megabytes need to add to database.
After selection utility expand database to number of megabytes have been
choosen. Utility expand databases independently of current autoexpand
database option. Sample of utility screen:

Select utility option:

1) Show current database size and limit

2) Extend current database size

Select option: 2

Available databases:

1) USER 2) %SYS 3) TEMP

Select database number to extend: 3

Enter megabytes count to add to database TEMP : 2

Database extension done.

Utility ˆ%DBSIZE is intended to control database size used on disk and
for manual database expanding. Utility can expand databases without auto-

114 CHAPTER 4. CHUI UTILITIES

expand option. Utility does not expand databases over configured database
grows limit and can expand only to this limit.

4.5 %GBI

Utility ˆ%GBI is developed to import globals data from block global import
file format or show this file information.

Usage

do ^%GBI

Utility on start offer to enter file name and select action to do:

USER>d ^%GBI

MiniM block global import

Enter file name to import globals from: e:\blocks.g

Select operation:

1. Show export comment

2. Show global’s names

3. Import globals

Option:

If operator choose 1, utility show file comment, entered on export to this
file.

If operator choose 2, utility show exported globals name, which was ex-
ported to this file.

If operator choose 3, utility imports globals data from file specified.

Utility can import data only from file created by MiniM block global
export only, no other MUMPS systems.

Utility imports not pages been exported, but globals data only. Utility
imports data into current database using current process environment, with
current journaling mode. So, operator can import from block global export
many times step-by-step.

Utility imports data as the merge command, global names with same
subscripts values are replaced, and new globals inserted. If database contains
globals names which are absent in block global export file, this names does
not removed.

4.6. %GBO 115

Block global import can work slowly than block global export, because
import parses page been exported and execute all operations to insert globals
data including journaling. Block import time and block export time also can
differs dependent of current page cache memory used.

Block global import executes not atomicity to all file data, utility imports
data as the merge command, without blocking all other processes.

Utility uses current subscript collation table defined to walk globals sub-
scripts.

4.6 %GBO

Utility ˆ%GBO executes block globals export to file for selected globals.

Usage

do ^%GBO

Utility offer to enter file name to export globals data to. If this file already
exists, this file will be overwritten. After file name utility offer to enter file
export comment. This is optional string to add to file and can contain any
information about this export.

USER>d ^%GBO

MiniM block global export

Enter file name to export globals: e:\datablk.g

Enter description:

Next utility offer to enter globals name mask to export. To end global
mask entering operator must enter empty string (simply press Enter).

Global name mask: GloData

Global name mask:

After input global names mask utility execute block global export for
selected globals.

Block global export differs from other globals formats, here export only
significant page areas with keys and data for later block global import. Ex-
port use internal undocumented format, with the same format used to store
globals in datafile pages. All internal block export and import functions

116 CHAPTER 4. CHUI UTILITIES

$v(”db”) are not documented too and can be changed in later MiniM ver-
sions. Block global export executes only from current database.

Block export executes at one moment point of view, in the same state on
export start. While block global export executes, all other processes cannot
change this global and waits export done. Atomic export executes only for
one global. If utility must export several globals, next global will be exported
in state at the end of prior global exported.

Block global import is intended only for MiniM usage and does not ac-
cepted by other MUMPS implementations. Other MUMPS systems can use
his own block export files format. So, administrator can transfer block ex-
ported data only between two or more MiniM Database Servers.

Block global export executes much faster than other global export because
system does not use any data or subscripts parsing and writes leaf pages
entirely and use only significant page space.

4.7 %GDIR

Utility ˆ%GDIR is developerd to list globals are available in the current
database.

Usage

do ^%GDIR

Utility offer to enter globals name mask. Name mask can contain sym-
bol ”?” as pattern of one any character and symbol ”*” as pattern of any
characters sequence.

Utility sequentially ask several name masks. If operator enter ampty
string (press Enter or Escape), utility stops to enter name masks.

Next utility query optional file name to output list of globals names are
available. If operator enter empty string (press Enter or Escape), utility show
globals names on the screen, otherwise outputs this list into file specified.

Example:

Global name mask: *

Global name mask:

Enter file name to print to (optional):

List of selected globals’s in database USER

4.8. %GI 117

^A

^D

^ROUTINE

^UTILITY

^a

^rOBJ

USER>d ^%GDIR

MiniM Globals listing utility

Global name mask: *O*

Global name mask:

Enter file name to print to (optional):

List of selected globals’s in database USER

^ROUTINE

^rOBJ

4.8 %GI

Utility ˆ%GI perform global import into current database global data from
global export file.

Usage

do ^%GI

Utility offer to enter file name to import data from. If operator enter an
empty string (simply press Enter or Escape), utility exits.

Next utility offer to enter global export format number, which have been
used for export to this file.

Select file format:

1. Stream format (Cache or MSM or ANSI)

2. Variable-length format (Cache or MSM)

Format option:

Utility use different unpacking methods depended of selected format code.
IF operator choose unsupported format number, utility exits.

118 CHAPTER 4. CHUI UTILITIES

Utility uses already used for different MUMPS systems global export for-
mats, intended by Intersystems (Cache) and Micronetics (MSM) and widely
used by many MUMPS servers.

Stream formats can be used to store data which have not in data or in
subscripts any unprintable characters. If at least one subscript or global data
can contain any characters, operator must export this globals using variable-
length formats. Stream formats uses line feed character to distinquish parts
of names and data, and variable-length formats contain special market to
indicate data length have been used.

Utility imports data without removing any globals with the same names
and override data if database contain the same subscripts.

Time to work is depended of global export file volume and from available
page cache. Utility does not lock or block imported global names and other
processes still work and can access globals for import.

4.9 %GL

Utility ˆ%GL perform global import into current database global data from
global export file.

Usage

do ^%GL

Utility ˆ%GL is a wrapper to ˆ%GI utility for compatability with widely
used names in other MUMPS systems.

4.10 %GO

Utility ˆ%GO perform export global data to file.

Usage

do ^%GO

Utility offer to enter file name to export globals data to. If operator enter
an empty string (simply pressing Enter or Escape), utility exits.

Next utility offer to select global export format.

4.10. %GO 119

Select one of the following formats:

1. Cache stream

2. Cache variable length

3. MSM stream

4. MSM variable length

Q. Quit export

Choose format:

Utility use different packing methods depended of selected format code.
IF operator choose unsupported format number, utility exits.

Utility uses already used for different MUMPS systems global export for-
mats, intended by Intersystems (Cache) and Micronetics (MSM) and widely
used by many MUMPS servers.

Stream formats can be used to store data which have not in data or in
subscripts any unprintable characters. If at least one subscript or global data
can contain any characters, operator must export this globals using variable-
length formats. Stream formats uses line feed character to distinquish parts
of names and data, and variable-length formats contain special market to
indicate data length have been used.

Next utility offer to enter export description or autoload header indicator
to make autoload format. Next time operator can see file header to determine
what data have been exported. If operator select autoload indicator (”ˆ”),
utility create special file header which can be used later to import globals
data from file using command line:

minim.exe < filename.gsa

Moreover, if operator select autoload option, this file can be imported as
others files without autoload header.

To make autoload header for globals export file utility uses first two file
lines intended by MUMPS standard to insert special MUMPS commands
and autoload option cannot be used with variable-length file formats.

Next utility offer to enter globals names to export.

Global name mask: A

Global name mask:

120 CHAPTER 4. CHUI UTILITIES

Here global indicator circumflex ”ˆ” is optional.

If operator enter an empty string, utility stops to enter names and ex-
ecutes global export with selected options if this globals are present in the
database.

Operator can use names masks, where symbol ”?” is a pattern for one
character and symbol ”*” is a pattern for any characters sequence.

Time to work is depended of globals total volume to export. Utility does
not lock or block globals and other processes can work with this globals in
the same time.

4.11 %GS

Utility ˆ%GS perform export global data to file.

Usage

do ^%GS

Utility ˆ%GS is a wrapper to ˆ%GO utility for compatability with widely
used names in other MUMPS systems.

4.12 %JOBTAB

Utility ˆ%JOBTAB show current process list on the server, some process
characteristics and allow to kill selected process.

Usage

do ^%JOBTAB

Utility show table of currently active processes on the server with columns
of: 1) job’s number, 2) job’s current database, 3) job’s currently executed
routine, 4) job’s current device and 5) job’s last global reference.

Sample utility screen:

Job table at 02.06.2009 13:03:39

Entry Job Database Routine Principal Last global reference

4.13. %JOURNAL 121

1) 812 %SYS %srv |TCP| ^ROUTINE("%JOBTAB",0)

2) 908 USER %srv |NULL| ^%SRV("stop")

3) 940 USER %JOBTAB |CON| ^UTILITY(940,2)

Page #1 of 1

[R]eload | [Q]uit | kill [J]ob | kill [E]ntry | Up/Down

Command:

Utility show table of jobs with pages and allow page change, if number
of currently active processes does not allow to show all table at one screen,
and show current page of job’s list and total number of pages.

Utility waits operator command case insensitive.

R Reload list and show from first page
Q Exit utility
J Delete job specified by job number
E Delete job specified by position in list shown

On press up and down arrows utility goes to prior or next page and
refreshes the screen.

Utility obtain job’s information not as a snapshot, and sequentially reads
job’s characteristics one-by-one. So, last line of the job’s table can be creates
with small of time difference. Full job’s list creation is dependent of total
number of jobs on the server.

4.13 %JOURNAL

Utility ˆ%JOURNAL show current journal state and control by journal
switch and truncation.

Usage

do ^%JOURNAL

Utility at start show current journal state - directory and last used journal
file.

Next utility offer to choose journaling option - switch current joutnal file
or truncate journal.

Sample utility screen:

122 CHAPTER 4. CHUI UTILITIES

Minim Journal state utility

Journal directory:

e:\workfiles\minim\journal\

Current journal file:

e:\workfiles\minim\journal\2009-06-02.002

Select journal operation:

1) Switch current journal file

2) Truncate journal

Select option:

If option 1 choosen, utility switches server to the new journal file, and
link to full journal sequence. If option 2 choosen, utility truncates journal,
and journal file store only records need to complete (commit or rollback)
currently uncompleted transactions of server processes. Other journal records
are removed and can be removed prior unneed journal files.

If operator choose other option, utility ends working.

4.14 %LOCKTAB

Utility ˆ%LOCKTAB show locks are available on the server as table and
allow to remove lock specified.

Usage

do ^%LOCKTAB

Utility show list of locks available on the server as table and organize table
by pages. Each lock is shown with job number of owner, locking counter and
name was locked. Names of locks are names of local and global variables.
Sample utility screen:

Lock table at 02.06.2009 18:51:52

8388608 bytes total, 160 bytes used

Entry Owner Count Item

1) 940 1 a

2) 940 1 ^|"USER"|b

Page #1 of 1

4.15. %PERFMON 123

[R]eload | [Q]uit | [D]elete one | delete [J]ob’s >>

>> | delete [A]ll | Up/Down

Command:

Utility show current locking memory usage, number of table’s page and
total number of pages available. Next utility waits operator command case
insensitive. Table of utility commands:

R Reload list of locks and show table from first page
Q Exits utility
D Remove one lock specified by position in table

shown
J Remove all locks of job specified by job number
A Remove all server locks

Operator can change page to prior or next page of the table by pressing
up and down arrows.

Utility gets list of locks not as snapshot and reads list sequentially, one-
by-one. So, some part of table can be incoherent.

Utility can remove locks owned by any process, not only by current pro-
cess of utility.

4.15 %PERFMON

Utility ˆ%PERFMON show current server performance counters.

Usage

do ^%PERFMON

Utility clears screen and display current server performance counters
available. Screen refreshes every 1 second. Performance counters are shown
in table with first column as counter name, second column as current counter
value and thord column as middle counter value by last 12 seconds.

Utility waits any input. If no any characters entered, utility continues
display performance counters with values of current second. If operator press
any key, utility simply ends working.

Sample utility screen:

124 CHAPTER 4. CHUI UTILITIES

MiniM Performance Monitor

Performance Counter Current Middle

--

Blocks read/sec 0 0

Blocks write/sec 0 0

Blocks allocated/sec 0 0

Blocks freed/sec 0 0

Datafile expand MB/sec 0 0

Globals read/sec 1 1

Globals write/sec 0 0

Globals kill/sec 0 0

Locals read/sec 1206 1209

Locals write/sec 659 662

Locals kill/sec 0 0

Block split/sec 0 0

Journal write Bytes/sec 0 0

Routine read/sec 0 0

Press any key to exit

4.16 %RCHANGE

Utility ˆ%RCHANGE search string specified in routines source code and
replace found with optional recompilation.

Usage

do ^%RCHANGE

Utility offer to enter pairs search string and replace string with option
case sensitive search or not. Operator can enter several pairs to replace.
Sample utility screen:

MiniM Replace text in routines utility

1. Search for: abc

Replace with: def

Case sensitive search? [Y/N]: n

2. Search for:

4.16. %RCHANGE 125

If operator enter an empty string, utility ends to input pair search -
replace strings and offer to enter routines names masks to search in.

Routine name mask: *a*

Routine name mask:

If operator enter an empty string (simply press Enter or Escape), utility
ends masks input. Operator can use special symbols - ”?” as a pattern for
any character and ”*” as a pattern of any characters sequence.

Next uitlity offer to enter recompilation option for routines to be changed
after replacing

Recompile changed routines? [Y/N]:

Nect utility offer to enter file name for report.

Enter file name to print to (optional):

If operator enter an empty string, utility display report to the screnn,
otherwise to file specified.

Utility show routine names where search text have been found, strings
after replacing and recompilation result with possible syntax errors. If routine
does not changed, this routine does not recompiled.

If routine names are entered without extension, utility use only standard
routines (INT), otherwise utility use specified routine types. In the routine
extension cannot be used placeholders and utility support the following types:
INT, MAC, INC. Example:

Enter name masks or #L to list selected or #D to remove selection.

Routine name mask: MP*.MAC

Routine name mask: f*.INC

Routine name mask: #L

List of selected routine names:

MPPSRC.MAC

first.INC

126 CHAPTER 4. CHUI UTILITIES

4.17 %RCOMPIL

Utility ˆ%RCOMPIL compiles routines selected.

Usage

do ^%RCOMPIL

Utility offer to enter routines names mask for compilation:

MiniM Compile routines utility

Enter name masks or #L to list selected or #D to remove selection.

Routine name mask: ?a*

Routine name mask:

Utility accept list of routines masks. Operator can use special symbols
- ”?” as a pattern for any character and ”*” as a pattern of any characters
sequence. To stop enter routine masks simply press Enter or Escape.

Next utility offer to enter file name (optional) for report. If operator enter
an empty string, utility outputs report to the screen.

While utility recompile routines, report made contains current database
name, routine names to recompile and syntax error descriptsion. Sample
utility screen:

Compile selected routines in USER

Compile label

Compile matrix

After compilation utility ends.

If routine names are entered without extension, utility use only standard
routines (INT), otherwise utility use specified routine types. In the routine
extension cannot be used placeholders and utility support the following types:
INT, MAC, INC. Example:

Enter name masks or #L to list selected or #D to remove selection.

Routine name mask: MP*.MAC

Routine name mask: f*.INC

Routine name mask: #L

List of selected routine names:

MPPSRC.MAC

first.INC

4.18. %RCOPY 127

4.18 %RCOPY

Utility ˆ%RCOPY copies selected routines from current database into an-
other.

Usage

do ^%RCOPY

Utility offer to enter routines names mask for copy and recompilation:

USER>d ^%RCOPY

MiniM Routine Copy Utility

Enter name masks or #L to list selected or #D to remove selection.

Routine name mask: CLI*

Routine name mask:

Utility accept list of routines masks. Operator can use special symbols
- ”?” as a pattern for any character and ”*” as a pattern of any characters
sequence. To stop enter routine masks simply press Enter or Escape.

Next utility ask need or not recompile selected routines after copying.

Recompile routines after copy? [Y/N]: y

Next utility display the list of all available databases, current database
name and query target database name to copy routines.

List of available databases:

%SYS

TEMP

USER

APPDB

Current database: USER

Enter target database name: appdb

The database name can be entered case insensitive. If operator enter an
empty line, utility ends. If operator enter name of the current database,
utility query target database name again.

After all selected routines was copied into target database, utility recom-
pile this routines if need.

128 CHAPTER 4. CHUI UTILITIES

If routine names are entered without extension, utility use only standard
routines (INT), otherwise utility use specified routine types. In the routine
extension cannot be used placeholders and utility support the following types:
INT, MAC, INC. Example:

Enter name masks or #L to list selected or #D to remove selection.

Routine name mask: MP*.MAC

Routine name mask: f*.INC

Routine name mask: #L

List of selected routine names:

MPPSRC.MAC

first.INC

Include routines does not compiled and MAC routines are precompiled
by macro preprocessor.

4.19 %RDELETE

Utility ˆ%RDELETE removes routines and, optional, routine bytecode.

Usage

do ^%RDELETE

Utility offer to enter routines names masks. Operator can use special
symbols ”?” as pattern of any character and ”?” as pattern of any characters
sequence. If operator enter an empty string (simply press Enter or Escape),
utility ends input of routines names. Sample utility screen:

MiniM Delete routines utility

Routine name mask: q*

Routine name mask:

After end of names input utility offer to select option need routines byte-
code of this routines be deleted or not.

Next utility offer to enter optional file name to output report to. If
operator enter an empty string, utility display report on the screen. Utility
show current database name and routine names deleted with option source
code or bytecode deleted. Sample utility screen:

4.20. %RDIR 129

Deletion selected routines in database USER

q111 (source)

q111 (bytecode)

After routine deletion utility ends.

If routine names are entered without extension, utility use only standard
routines (INT), otherwise utility use specified routine types. In the routine
extension cannot be used placeholders and utility support the following types:
INT, MAC, INC. Example:

Enter name masks or #L to list selected or #D to remove selection.

Routine name mask: MP*.MAC

Routine name mask: f*.INC

Routine name mask: #L

List of selected routine names:

MPPSRC.MAC

first.INC

4.20 %RDIR

Utility ˆ%RDIR show routine names are available using selected routine
masks.

Usage

do ^%RDIR

Utility offer to choose routine name masks. Operator can use special sym-
bols ”?” as a pattern of one character and ”*” as a pattern of any characters
sequence. If operator enter an empty string (simply press Enter or Escape),
utility stops to enter names masks and offer to enter optional file nmae to
make report to. Sample utility screen:

MiniM Routines listing utility

Routine name mask: *

Routine name mask:

Enter file name to print to (optional):

130 CHAPTER 4. CHUI UTILITIES

If operator enter an empty string, utility display routine names are avail-
able in the database to the screen, otherwise outputs names to file specified.
Sample utility screen:

List of selected routine’s in database USER

PITON

def

job

label

matrix

q111

After display routine names utility ends.

If routine names are entered without extension, utility use only standard
routines (INT), otherwise utility use specified routine types. In the routine
extension cannot be used placeholders and utility support the following types:
INT, MAC, INC. Example:

Enter name masks or #L to list selected or #D to remove selection.

Routine name mask: MP*.MAC

Routine name mask: f*.INC

Routine name mask: #L

List of selected routine names:

MPPSRC.MAC

first.INC

4.21 %RESTART

Utility ˆ%RESTART is intended to stop the server and run again.

Usage

do ^%RESTART

After run utility offer to confirm MiniM Database Server restart.

USER>d ^%RESTART

MiniM server restart utility.

Are you sure to restart server? [Y/N]:

4.22. %RESTORE 131

If operator choose answer, utility exits. If operator choose ”Y”, utility
send signal to server to stop working and server terminates all processes
including current process. Next process work interrupts. Time to execute
restart depends of volume of data need to be flushed to datafiles.

After stop server starts again. New server environment can differs from
environment before start because server accepts any changes made in config-
uration files.

Internal subroutine to restart MiniM Database Server:

d restart^%RESTART

4.22 %RESTORE

Utility ˆ%RESTORE is intended to restore database or several databases
from selected backup file and show information about backup file.

Usage

do ^%RESTORE

On running utility offer to select operation type - show backup informa-
tion or restore databases from backup file.

MiniM Database restore utility

Select restore option:

1) View backup info

2) View database list in backup file

3) Restore database from backup file

Select option:

If operator select unsupported option, utility stop working. On selection
option 1) View backup info utility offer to enter file name of backup file and
lists all available information.

Enter backup file name: full.bak

Backup info:

Full backup

File has 2 backed up databases

Backup date 03.06.2009

132 CHAPTER 4. CHUI UTILITIES

Next utility again offer to enter option to do.

If operator select alternative 2) View database list in backup file utility
offer to enter backup file name and lists all available in this file backed up
databases and offer to select option to do again.

Enter backup file name: full.bak

Backed up database list:

1) USER

2) %SYS

If operator select alternative 3) Restore database from backup file utility
offer to enter backup file name and offer to confirm backup type

Enter backup file name: full.bak

Select restore type:

1) Full

2) Differential

Select option:

Next utility offer to choose journal operation to execute after database
restore.

Select journal operation:

1) Apply journal records after backup point

2) Rollback uncomplete transactions from backup point

3) Skip journal operations

Select option:

If operator choose option 1) utility after restore search in journal appro-
priate backup point and applies to databases all journaled operations. If
operator choose option 2) utility search in journal appropriate backup point
and rolls back all transactions not committed at this backup point. And if
operator choose option 3) utility does not use journal.

Next utility offer to select reporting option.

Report option:

1) Make report

2) No report

Select option:

4.23. %RFIND 133

If operator select option 1) utility offer to enter file name for report. If
operator enter empty string, utility write report to current screen.

After all options selected utility restore databases from backup file. Ex-
ample restore report seems like this:

Checking backup file full.bak

Disabling job starting and freezing active jobs...

Checking job transaction states.

Database to restore from backup: USER

Database to restore from backup: %SYS

Start restoring from backup file full.bak

Start journal phase.

Journal phase skipped.

Enabling job starting and unfreezing active jobs.

Database restore completed successfully.

If utility detect an error while databases restored, utility write message
into report target and into screen.

On database restore utility can temporary stop other processes and can
decline from restoring if one or more processes still in transactions to prevent
transactions or processes states and prevent data lost.

Time to work is dependent of count of database to restore, of current
datafiles state and of number of pages need to be restored (volume of backup
file). Restore utility can grows and decrease databases datafiles depending
of backed up database states.

Databases are restored in current database configuration of root and
extent datafiles, independently of extent configuration have been used in
backup.

4.23 %RFIND

Utility ˆ%RFIND execute text search in routine’s source code and show
routine names and lines found.

Usage

do ^%RFIND

Utility offer to enter string to find and search options - case sensitive or
not.

134 CHAPTER 4. CHUI UTILITIES

USER>d ^%RFIND

MiniM Search in routines utility

Search for: *27

Case sensitive search? [Y/N]:

Next utility offer to enter routine names mask to search text in. Operator
can use special symbols ”?” as a pattern of one character and ”*” as a pattern
of any characters sequence. If operator enter an empty string (simply press
Enter or Escape), utility stops to enter names masks.

Next utility offer to enter optional file name to output lines fount to. If
operator enter an empty string, utility outputs lines found to screen.

For each existing routine with name conformed to one of masks been
entered utility search line in routine source code with options specified. If
this line is found, utility display routine name, label, offset and line of code.

After full search utility ends.

If routine names are entered without extension, utility use only standard
routines (INT), otherwise utility use specified routine types. In the routine
extension cannot be used placeholders and utility support the following types:
INT, MAC, INC. Example:

Enter name masks or #L to list selected or #D to remove selection.

Routine name mask: MP*.MAC

Routine name mask: f*.INC

Routine name mask: #L

List of selected routine names:

MPPSRC.MAC

first.INC

4.24 %RFIRST

Utility ˆ%RFIRST show first rouine lines.

Usage

do ^%RFIRST

Utility offer to enter routine names masks to show first lines.

4.25. %RI 135

USER>d ^%RFIRST

MiniM Show routine’s first lines utility

Routine name mask: *

Routine name mask:

If operator enter empty string (simply press Enter or Escape), utility
ends query routine names masks. Operator can use special symbols ”?” as a
pattern of one character and ”*” as a pattern of any characters sequence.

Next utility offer to enter optional file name to output first routines lines.
If operator enter an empty string, utility outputs first lines to screen.

Sample utility screen:

First lines of selected routines in USER

job job ; k d ^job w

label label ; k d ^label w

matrix matrix ; k d ^matrix w

After show first lines utility ends.

If routine names are entered without extension, utility use only standard
routines (INT), otherwise utility use specified routine types. In the routine
extension cannot be used placeholders and utility support the following types:
INT, MAC, INC. Example:

Enter name masks or #L to list selected or #D to remove selection.

Routine name mask: MP*.MAC

Routine name mask: f*.INC

Routine name mask: #L

List of selected routine names:

MPPSRC.MAC

first.INC

4.25 %RI

Utility ˆ%RI imports routine source code from file specified.

Usage

136 CHAPTER 4. CHUI UTILITIES

do ^%RI

Utility offer to enter file name to import routines from and check this file
exists and can be opened to read. If operator enter an empty string (simply
press Enter or Escape) utility ends.

USER>d ^%RI

MiniM routine import

Enter file name to import routines from:

Next utility show first two lines of file specified and suppose this two lines
contains export information. Sample utility screen:

Enter file name to import routines from:

w:\minim\routines\misc\matrix.rtn

File w:\minim\routines\misc\matrix.rtn has been >>

>> written with description:

9:10 10-???-2009~Format=ANSI.S~

File timestamp:

In depend of used export tool and MUMPS implementation and version
first two lines can differs.

Next utility offer to choose what action must be performed:

Routine input option ([L]ist,[Q]uit,[C]ompile):

If operator choose command ”Q”, utility ends working. If have been
choosen command ”L”, utility lists all routines names places in this file. And
if have been choosen command ”C”, utility imports routines source code and
compile all imported routine one-by-one.

Utility show detailed report what happens, sample utility screen:

Routine input option ([L]ist,[Q]uit,[C]ompile): c

Load matrix... compile... success

Utility ˆ%RI imports only standard routines (INT). To import macro
routines (MAC, INC) use MiniM Control Center or MiniM Routine Editor
or ˆ%RSAIN utility.

Different MiniM versions can contain small changes of reporting details.

4.26. %RIMF 137

4.26 %RIMF

Utility ˆ%RIMF imports routine bytecode from file.

Usage

do ^%RIMF

Utility offer to enter file name to import routine bytecode. One file can
contain several bytecodes.

USER>d ^%RIMF

MiniM routine’s bytecode import

Enter file name to import from:

If operator enter an empty string, utility ens working. Otherwise offer to
choose action - chow export header from file, execute import of bytecode and
show all routine names contained in this file. Sample utility screen to show
header:

USER>d ^%RIMF

MiniM routine’s bytecode import

Enter file name to import from:

w:\minim\routines\misc\matrix.mmo

Enter option ([H]eader, [I]mport, [L]ist):h

File w:\minim\routines\misc\matrix.mmo exported with header:

Matrix screen

Sample utility screen to show routine names:

USER>d ^%RIMF

MiniM routine’s bytecode import

Enter file name to import from:

w:\minim\routines\misc\matrix.mmo

Enter option ([H]eader, [I]mport, [L]ist):l

matrix

If operator choose import bytecodes, utility execute import and replaces
existing or adds unexisting bytecode to database.

MiniM processes uses bytecode to execute routine. Bytecode can differs
from current routine source code, and processes does not requires to use

138 CHAPTER 4. CHUI UTILITIES

routines source code except the $text() function. If function $text() call to
line of code with double comment (;;), source code does not required, because
this lines MiniM store in bytecode.

Other MiniM instance can import this exported bytecodes and execute
without routine source code. Exported bytecode can be used for MiniM
servers only and MiniM cannot use bytecode of other MUMPS systems.

Next utility ends working. Time to work is depended of total bytecodes
volume need to be imported.

4.27 %RL

Utility ˆ%RL imports routine source code from file specified.

Usage

do ^%RL

Utility ˆ%RL is a wrapper to ˆ%RI utility for compatability with widely
used names in other MUMPS systems.

4.28 %RO

Utility ˆ%RO exports routine source code to file.

Usage

do ^%RO

Utility offer to enter routines names mask for export. Operator can use
special symbols ”?” as pattern of any character and ”?” as pattern of any
characters sequence. If operator enter an empty string (simply press Enter
or Escape), utility ends input of routines names. Sample utility screen:

USER>d ^%RO

MiniM routine export

Enter name masks or #L to list selected or #D to remove selection.

Routine name mask: ma*

Routine name mask:

4.29. %ROMF 139

Next utility offer to enter file name for routine export. One file can contain
several routines. File store routines source code as is, without encoding or
compression.

Next utility offer to enter export description string or indicator to make
autoload header.

Enter description or ^ to make auto-loading file:

Description can be any string, this string is stored in the file and can
describe what this file contain.

If operator enter autoload header indicator (”ˆ”) utility creates special
file header, which make possible import this file later using command line in
batch mode:

minim.exe < filename.rou

Utility exports source code in ANSI format. After export utility ends.
Time to work is depended of total number of routines selected for export.
Utility does not lock or block routines source code and other processes can
change source code in the same time.

Utility ˆ%RO exports only standard routines (INT). For extended export
of macro routines (MAC, INC) use utility ˆ%RSAOUT or MiniM Control
Center or MiniM Routine Editor and select Cache export format.

4.29 %ROMF

Utility ˆ%ROMF exports routine’s bytecode to file, which can be imported
later.

Usage

do ^%ROMF

Utility offer to select routine names masks, which bytecode need to be
export. Operator can use special symbols ”?” as a pattern for one character
and ”*” as a pattern of any characters sequence. If operator enter an empty
string, utility ends input routine names. Sample screen while utility works:

140 CHAPTER 4. CHUI UTILITIES

USER>d ^%ROMF

MiniM routine’s bytecode export

Enter routine’s name mask: ma*

Enter routine’s name mask:

Next utility offer to enter file name to export bytecode. MiniM does
not limit operator to use special file extensions, but operator can consider
that MiniM Control Center and other GUI MiniM utilities use by default
extension mmo.

Next utility offer to enter file header. This is any string been written to
a file and can contain any information about export.

Next utility exports selected bytecodes to file specified. Sample screen of
export:

USER>d ^%ROMF

MiniM routine’s bytecode export

Enter routine’s name mask: ma*

Enter routine’s name mask:

Enter file name to export to:

w:\minim\routines\misc\matrix.mmo

Enter file comment: Matrix screen

Exported 1 routine’s bytecode.

Next utility ends working. Time to work is depended of total bytecodes
volume need to be exported.

MiniM processes uses bytecode to execute routine. Bytecode can differs
from current routine source code, and processes does not requires to use
routines source code except the $text() function. If function $text() call to
line of code with double comment (;;), source code does not required, because
this lines MiniM store in bytecode.

Other MiniM instance can import this exported bytecodes and execute
without routine source code. Exported bytecode can be used for MiniM
servers only and MiniM cannot use bytecode of other MUMPS systems.

4.30 %RS

Utility ˆ%RS exports routine source code to file.

Usage

4.31. %RSAIN 141

do ^%RS

Utility ˆ%RS is a wrapper to ˆ%RO utility for compatability with widely
used names in other MUMPS systems.

4.31 %RSAIN

Utility ˆ%RSAIN imports routine source code from file in the RSA format.

Usage

do ^%RSAIN

RSA file format allow to save and distinquish routine types (INC, MAC
and INT) and save modification timestamp.

Utility offer to enter file name to import routines from and check this file
exists and can be opened to read. If operator enter an empty string (simply
press Enter or Escape) utility ends.

USER>d ^%RSAIN

MiniM RSA format routine import

Enter file name to import routines from:

Next utility show first two lines of file specified and suppose this two lines
contains export information. Sample utility screen:

Enter file name to import routines from:

w:\minim\st\routines\test.rsa

File w:\minim\st\routines\test.rsa has >>

>>been written with description:

this is description

File timestamp: MiniMRE on jun 09 2011 23:47

Next utility offer to choose what action must be performed:

Routine input option ([L]ist,[Q]uit,[C]ompile):

142 CHAPTER 4. CHUI UTILITIES

If operator choose command ”Q”, utility ends working. If have been
choosen command ”L”, utility lists all routines names places in this file. And
if have been choosen command ”C”, utility imports routines source code and
compile all imported routine one-by-one.

Additionally utility query report file name. It is very useful if file contains
many routines and compilation report can contain many error. If operator
does not enter report file name, utility outputs report to current screen.

Utility show detailed report what happens, sample utility screen:

Routine input option ([L]ist,[Q]uit,[C]ompile): c

Enter file name for report:

Load %BACKUP.INT...

Load %CONX364.INT...

Compile %BACKUP.INT

Compile %CONX364.INT

On import utility first imports all routines are present in this file and
at the second step recompiles all ones. Routines with the type INC does
not compiled. Routines with type MAC before compilation are processed
by macro preprocessor and result INT codes are compiled. Routines with
type INT are compiled as is. If utility detects both routine of MAC and
INT type and the same name are present, utility imports both routines but
compile only MAC routine. If routine preprocessing requires that one or
more routines be already compiled and must be executed on preprocessing
stage, this routine must be imported before from separate file.

Different MiniM versions can contain small changes of reporting details.

4.32 %RSAOUT

Utility ˆ%RSAOUT exports routine source code to file in RSA format. RSA
file format allow to save and distinquish routine types (INC, MAC and INT)
and save modification timestamp.

Usage

do ^%RSAOUT

4.32. %RSAOUT 143

Utility offer to enter routines names mask for export. Operator can use
special symbols ”?” as pattern of any character and ”?” as pattern of any
characters sequence. If operator enter an empty string (simply press Enter
or Escape), utility ends input of routines names. Sample utility screen:

USER>do ^%RSAOUT

MiniM RSA format routine export

Enter name masks or #L to list selected or #D to remove selection.

Routine name mask: A4*.MAC

Routine name mask:

Next utility offer to enter export description string. It is additional in-
formation for operator.

USER>do ^%RSAOUT

MiniM RSA format routine export

Enter name masks or #L to list selected or #D to remove selection.

Routine name mask: A4*.MAC

Routine name mask:

Enter description for export:

Description can be any string, this string is stored in the file and can
describe what this file contain.

Next utility offer to enter file name for routine export. One file can contain
several routines. File store routines source code as is, without encoding or
compression.

USER>do ^%RSAOUT

MiniM RSA format routine export

Enter name masks or #L to list selected or #D to remove selection.

Routine name mask: A4*.MAC

Routine name mask:

Enter description for export:

Enter file name to export routines:

If operator enter empty file name, utility ends.

Utility exports source code in RSA file format. After export utility ends.
Time to work is depended of total number of routines selected for export.
Utility does not lock or block routines source code and other processes can
change source code in the same time.

144 CHAPTER 4. CHUI UTILITIES

4.33 %SHUTDOWN

Utility ˆ%SHUTDOWN perform MiniM Database Server shutdown.

Usage

do ^%SHUTDOWN

On running utility offer to confirm server shutdown.

USER>d ^%SHUTDOWN

MiniM server shutdown utility.

Are you sure to shutdown server? [Y/N]:

On input selection utility stop working. If operator choose Y utility send
internal signal to stop server working and server stops all active processes,
including current process of utility and stops daemons. Next process working
stops. Time to stop is dependent of volume of actions required to stop all
processes and daemons.

Internal program point to stop server

d stop^%SHUTDOWN

Chapter 5

Macro Preprocessor

5.1 Macro Routines

MiniM Database Server since version 1.6 supports macro preprocessor for
macro routines. Standard routines which are defined in the MUMPS lan-
guage counts as INTermediate routines, routines with macros - MACro rou-
tines and routine for inclusion on preprocessing - INClude routines.

Routine names in MiniM Routine Editor and in MiniM Control Center
are distinquished by logial extension, for example:

ROUNAME.MAC

ROUNAME.INC

ROUNAME.INT

MiniM Database Server supports the following rules: 1) INC routines
does not compiles into executable bytecode, 2) INT routines compiles into
executable bytecode and 3) MAC routines translates by macro preprocessor
into appropriate INT routine with the same name and next compiles into
executable bytecode.

Macro routines MAC and INC which starts from the percent symbol (%)
are mapped using the same rules as standard INT routines, are stored in the
%SYS database and are visible from any other database.

Macro routines are the source code for the standard INT routines and
following executable bytecode. Macro preprocessor scans line-by-line se-
quentially and if line contains macro directive execute this directive or if
contains macros, substitites this. Macro routine can contain simple lines

145

146 CHAPTER 5. MACRO PREPROCESSOR

with the MUMPS code, macro directives, macros or any combination by the
programmer opinion.

Different routine types can have the same names. The routine source
code is stored in different globals. After MAC routine translation result of
INT routine is available for viewing or editing.

MiniM supports macros only in the macro routines. Indirection, xecute
commands, command line mode and MWA tags does not supports macros.

MiniM Routine Editor supports syntax highlightning for macro directives
and macros.

MiniM Routine Editor and MiniM Control Center supports extended for-
mat for export and import routines in Cache RSA format (Routine Save
Archive) with differentiating by routine types and saves the change times-
tamp.

5.2 #define

Directive #define defines the name of macros with optional arguments and
optional substitution string. Name must have first symbol letter and can
contain letters and digits.

Directive has two arguments - macros name and substitution string:

#define NAME[(args)] [string for replace]

Substitution string is optional, and without one macros replaces to an
empty string. Macros arguments are optional too. If argumants are present,
thay must be specified inside parenthesis after macros name and each argu-
ment must have leading symbols persent (%) and letter, and following letters
and digits. For example:

#define NAME(%arg1) ^ABC("NAME",%arg1)

On macros usage must be specified leading symbols $$$. For example:

write $$$NAME(123)

write $d($$$NAME(456))

translates to INT routine as lines:

5.2. #DEFINE 147

write ^ABC("NAME",123)

write $d(^ABC("NAME",456))

If macros have an arguments, on macros usage arguments must be spec-
ified too.

On substitution macros arguments substitutes by names, For example if
we have a macros:

#define NAME(%n,%v) s ^ABC("ind",%n)=%v

than on usage

$$$NAME(123,456)

this macros translates into

s ^ABC("ind",123)=456

Macros allows enclosure, macros can be used as an arguments or a part
of other macros. For example, the following text:

#define A1 "A"

#define B1(%a) BB(%a)

w $$$B1($$$A1)

translates into

w BB("A")

If macros is present inside the string or inside the comment, this macros
does not substitutes, for example:

#define A1 "A"

#define B1(%a) BB(%a)

w "$$$B1($$$A1)"

; $$$B1($$$A1)

translates into

w "$$$B1($$$A1)"

; $$$B1($$$A1)

148 CHAPTER 5. MACRO PREPROCESSOR

Directive #define must use the entire line of code. On translation no line
prodices to INT routine.

After mascros been defined this name counts as defined name for prepro-
cessor independently of macros arguments and existence of defined macros
can be checked by directives #ifdef or #ifndef.

After macros been defined this name redefinition counts as an error inde-
pendently of macros arguments.

If macros have not been defined, this name cannot be use and name usage
counts as a preprocessor error.

Macros definition can be removed by the preprocessor directive #undef.

5.3 Macro Comment

Macro comment starts from the following symbols:

#;

and after ones follows the comment text. On the preprocessing the entire
line does not includes into output INT routine.

Macro comment must be started from the line begin. If before symbol
are present any nonspace symbols, entire macro comment insertd by pre-
processor into output INT routine and give syntax error on INT routine
compilation into bytecode.

Example:

;; comment included into bytecode

;; and into INT routine

; comment included into INT routine

; but not into bytecode

#; comment does not included

#; into INT routine or bytecode

5.4. #ELSE 149

5.4 #else

Directive #else switches condition of conditional preprocessor block. This
directive applies to prior directive #if or #ifdef or #ifndef.

Directive #else splits conditional block to two parts. If block condition
evaluates as true, preprocessor use lines from start directive #if or #ifdef
or #ifndef up to #else directive, otherwise preprocessor use lines from the
#else directive to end of block, directive #endif.

Example:

#if $zv["MiniM"

#; code for MiniM

...

#else

#; code for others

...

#endif

Directives #if, #ifdef and #ifndef allows inclusion to each other and
preprocessor use pairs of block start and directives #else and #endif.

5.5 #endif

Directive #endif terminates conditional block of lines, from #if or #ifdef or
#ifndef directive.

On this directive translation preprocessor removes current processing con-
dition level and continues processing on previous level.

Example how to terminate conditional block with #else alternative:

#if $zv["MiniM"

#; code for MiniM

...

#else

#; code for others

...

#endif

Example how to terminate block started with directive #ifndef:

150 CHAPTER 5. MACRO PREPROCESSOR

#; application definitions

#ifndef incDEFINESINCLUDED

#define incDEFINESINCLUDED

#define APPDATA(%id) ^APP("data",%id)

#define APPIND(%n,%v) ^APP("ind",%n,%v)

#endif

Directives #if, #ifdef and #ifndef allows inclusion to each other and
preprocessor use pairs of block start and directives #else and #endif.

5.6 #execute

Preprocessor directive #execute executes argument as line of MUMPS com-
mands. Commands executes by the xecute command as is.

MiniM macro preprocessor use local variables with the %mpp prefix.
Don’t use this variables, this can break preprocessor.

As an argument of the #execute directive can be used any commands,
wich are allowed as a xecute arguments, and can be used output to the current
device. It is not recommended to use read commands from current device,
becouse macro translation context does not suppose this input and any other
interaction with the user.

Programmer can use side effects of directive #execute and create sequence
of this directives and combine side effects of directives #execute and #if.

:

#if $zv["MiniM"

#; terminate this job

k ^$JOB(pid)

#else

#execute w "WARNING: Unknown job termination.",!

#endif

If directives #if or #execute have side effects as current device changes,
it is required to restore current device to continue normal preprocessor exe-
cution.

5.7. #IF 151

5.7 #if

Directive #if starts conditional block of lines. Directive must have mandatory
argument as expression on the MUMPS language.

Directive #if starts conditional block and block of lines counts as a line’s
sequence up to next pair directive #endif. This conditional block can be
splitted by two parts by the #else directive.

On directive processing preprocessor evaluates argument as an expression
and if result is nonzero, preprocessor includes lines up to next pair directive
#else or #endif. If result evaluates as zero, next lines does not includes but
if next pair directive is a #else directive, lines includes from #else up to
#endif.

Example:

#if $r(2)

w 123,!

#endif

Here preprocessor evaluates value of function $r(2) and in depend of the
result includes or not line with the write command.

Directives #if, #ifdef and #ifndef allows inclusion to each other and
preprocessor use pairs of block start and directives #else and #endif.

Directive #if unlike of the if command evaluates once and on the com-
piling stage. This directive can be used to generate code in dependent of
current MUMPS environment:

#if $zv["MiniM"

#; code for MiniM

...

#endif

#if $zv["Cache"

#; code for Cache

...

#endif

After compilation of this MAC routine in MiniM we got INT routine
with special code for MiniM, if compiled in Cache, we got code for Cache
and others.

Preprocessor use internal local variables with the %mpp prefix. Don’t use
this variables, this can break preprocessor. Programmer can combine side
effects of the #if and #execute directives.

152 CHAPTER 5. MACRO PREPROCESSOR

5.8 #ifdef

Preprocessor directive #ifdef starts conditional block of lines. Directive must
have one mandatory argument as macros name without arguments.

Directive #ifdef starts conditional block which starts on the next line
and continues up to next pair directive #endif. Block can be splitted by two
parts by the #else directive.

Directive checks this macros been defined. Name specified can have or not
substitution string. If this name have been defined previously, preprocessor
includes following lines after #ifdef directive and up to next pair #else of
#endif directive. Otherwise preprocessor skip lines up to next #endif direc-
tive and if reacts pair #else directive, continues processing lines up to next
pair #endif directive.

Example:

#if $zv["MiniM"

#define verMiniM

#endif

...

#ifdef verMiniM

; code for MiniM

...

#else

; code for other MUMPS

...

#endif

Directives #if, #ifdef and #ifndef allows inclusion to each other and
preprocessor use pairs of block start and directives #else and #endif.

5.9 #ifndef

Preprocessor directive #ifndef starts conditional block of lines. Directive
must have one mandatory argument as macros name without arguments.

Directive #ifndef starts conditional block which starts on the next line
and continues up to next pair directive #endif. Block can be splitted by two
parts by the #else directive.

5.10. #INCLUDE 153

Directive checks this macros has not been defined. Name specified can
have or not substitution string. If this name have not been defined previously,
preprocessor includes following lines after #ifndef directive and up to next
pair #else of #endif directive. Otherwise preprocessor skip lines up to next
#endif directive and if reacts pair #else directive, continues processing lines
up to next pair #endif directive.

Example of include file defines.INC:

#; application definitions

#ifndef incDEFINESINCLUDED

#define incDEFINESINCLUDED

#define APPDATA(%id) ^APP("data",%id)

#define APPIND(%n,%v) ^APP("ind",%n,%v)

#endif

Directives #if, #ifdef and #ifndef allows inclusion to each other and
preprocessor use pairs of block start and directives #else and #endif.

5.10 #include

Preprocessor directive #include includes specified in the argument INC rou-
tine. The name of the INC routine must be specified without type or exten-
sion.

Example:

#include common

#include defines

This code includes INC routines common.INC and defines.INC.

While directive #include processed, preprocessor includes instead this
line all lines of specified INC routine. The INC routine content can be any
macro code, including subroutines on MUMPS language, preprocessor direc-
tives or macros usage.

MiniM Database Server does not compile INC routines into intermedi-
ate routines, this routines intended only for inclusion by preprocessor. INC
routines can have the same names as MAC or INT routines.

154 CHAPTER 5. MACRO PREPROCESSOR

MiniM macro preprocessor allow secondary INC routine inclusion, but
contains protection from inclusion recursion. In the case of INC routine
contains and must allow recursion, this routine must contain protection from
recursion and from macros redefinition with macros name derives from the
INC routine name, for example:

#; application definitions

#ifndef incDEFINESINCLUDED

#define incDEFINESINCLUDED

#define APPDATA(%id) ^APP("data",%id)

#define APPIND(%n,%v) ^APP("ind",%n,%v)

#endif

If preprocessor detect inclusion resursion of INC routine, preprocessor
raise once error and does not execute recursion.

5.11 #undef

Preprocessor directive #undef removes definition of the macros specified.
Directive must have one mandatory argument as macros name without ar-
guments.

This directive removes macros with this name from internal preprocessor
definitions. Name must be specified without arguments. Directive removes
macros definition independently of the macros arguments. If this macros
name have not been defined, directive have not side effects.

Example:

#define NAME abc

s $$$NAME=123

#undef NAME

#define NAME def

s $$$NAME=456

Here directive #undef removes definition of the NAME macros and the
following macros definition does not raise preprocessor error about macros
redefinition.

5.12. MACRO FUNCTIONS 155

5.12 Macro functions

MiniM Database Server since version 1.12 implements macro functions, which
may significantly extend user-defined macro and macro expressions.

Macro functions can be called in context of evaluatable macro directives
#if and #execute. In this context preprocessor routine %MPP is curent and
macro functions implemented in routine %MPP may be used without routine
name specification.

Macro functions can change macro substitution, check macro existence,
return value, and other. In context of evaluatable macro directives macro
functions usage can extend developer possibilities, for example, developer
can create logical conditions over macros, generate macro substitution, pree-
valuate macro expression at compile time and other.

DEFINED(mname)

Macro function DEFINED returns value 1 if macro with name mname
was defined and value 0 in oher case. Macro name must be specified in
double quotes by MUMPS language rules. Developer can use macro name
evaluation too.

Macro function DEFINED allow to create logical expressions at compile
time in depends of defined macro or not. For example:

#define MACRO1

#if $$DEFINED("MACRO1")&$$DEFINED("MACRO2")

w "both macro1 and macro2 defined"

#else

w "one of macro1 or macro2 not defined"

#endif

#define MACRO2

#if $$DEFINED("MACRO1")&$$DEFINED("MACRO2")

w "both macro1 and macro2 defined"

#else

w "one of macro1 or macro2 not defined"

#endif

This code generate the following INT code:

156 CHAPTER 5. MACRO PREPROCESSOR

w "one of macro1 or macro2 not defined"

w "both macro1 and macro2 defined"

GET(mname,default=””)

Macro function GET returns current macro substitution of mname macro
or return the default value if macro was not defined or does not have substi-
tution.

For example, routine:

#define APPVERSION 3

; ...

#if $$GET("APPVERSION")>2

w "Code for application version greater than 2"

#else

w "Code for compatibility with version 1"

#endif

generates the code in dependence of application version number.

QUOTE(str)

Macro function QUOTE returns argument, decorated by MUMPS lan-
guage rules as a printable and readable string. For exampe, routine:

#execute d SET("LIST",$$QUOTE($lb(12,34,56)))

w $$$LIST

will evaluate at compile time some (may be very hard) expression and trans-
forms result to a MUMPS string:

w $C(3,4,12,3,4)_""""_$C(3,4)_"8"

In this example, the complexity of an expression ir very relative, but
real applications can significantly increase performance if preevaluate some
expressions.

SET(mname,msubst)

Macro function SET creates or replaces value of macro substitution. Sub-
stitution value evaluates at compile time. For example, macro routine:

5.12. MACRO FUNCTIONS 157

w "Routine executed at "_$zd($h,3)

#execute d SET("COMPILED",$$QUOTE($zd($h,3)))

w "Routine compiled at "_$$$COMPILED

will generate the code like this

w "Routine executed at "_$zd($h,3)

w "Routine compiled at "_"2011-12-25"

Here firt line outputs execution time, and second outputs compilation
time. Developers can preevaluate some set of constants, use owned substitu-
tion generation functions.

EVAL(expr)

Macro function, reverse to macro function QUOTE, evaluates expression
was specified by MUMPS language rules. For example, the following macro
code

#define MACROEXPR 1+2+3

#execute d SET("EXPAND",$$EVAL($$GET("MACROEXPR")))

w $$$EXPAND

will generate INT code with substitution of evaluated macro:

w 6

This example defines macro MACROEXPR as a string 1+2+3, next
line evaluates value of substitution (GET(”MACROEXPR”)), evaluates as a
MUMPS expression (EVAL), and result writes as a substitution to a macro
EXPAND. In result ordinal macrocode can use macro EXPAND with evalu-
ation result of MACROEXPR.

In context of evaluatable macro directives #if and #execute developer
can use complex combinations of macro functions and call own functions and
substitution generators.

158 CHAPTER 5. MACRO PREPROCESSOR

Chapter 6

MiniMono

6.1 MiniMono Architecture

MiniMono is a short name of special single-user MiniM edition, full name
is MiniM Embedded Edition. MiniM Embedded Edition is a dynamic link
library with MiniM modules and intended to use within personal applications
to embed into application MUMPS language and database possibilities and
functionality.

Now MiniMono is supported for the same operating systems as full MiniM
Database Server and have examples how to use for all supported operating
systems.

Application creates MiniMono virtual machine, call him to execute MUMPS
commands, evaluate expression values or change variables values. In a host
application context MiniMono works as a MiniM job and some write dae-
mons. MiniMono creates a daemon child threads as need. MiniMono virtual
machine can work with one database stored in the same format as such as in
full MiniM Database Server without no difference.

While MiniMono is active, application can use all MiniM Database Server
possibilities except to run child jobs and use multifile databases.

Full MiniM Database Server contains special things to improve data sta-
bility and full server works with operating system stability plus database
restoring by before image journal and restoring from backup. MiniMono as a
simple library is limited by host process stability and works with application
stability plus database restoring by before image journal and restoring from
backup.

MiniMono contains code for database expand daemon, write daemon and
journal daemon. Host application developer must anderstand that full MiniM

159

160 CHAPTER 6. MINIMONO

Database Server contains special protection things as process guardians and
MiniMono threads does not contain them and host application developer can
use only database restoring by before image journal and from backup. As
such as full MiniM Database Server, MiniMono contains hot backup and
restore too.

Common MiniMono use sequence is the following: 1) get default ini-
tialization values for virtual machine, 2) change default values as need by
application, 3) create virtual machine, 4) call MiniMono and 5) terminate
MiniMono virtual machine.

MiniMono does not store own settings in any INI files or Windows reg-
istry. It is considered that host application store own settings as need. One
MiniMono library can serve several host applications if ones use different
databases and does not allow to use one database by different host appli-
cations at one time. Each MiniMono virtual machine contains own MiniM
modules including own globals and routines caches and write daemons, so
several host applications cannot work with one database to prevent database
corruption.

One host application can create only one MiniMono virtual amchine. Host
application developer must anderstand that in his application address space
will present several secondary MiniMono objects and with incorrectly written
application the host process can corrupt internal MiniMono data structures.

MiniMono does not implement own user interface, character oriented or
windowed. MiniMono virtual machine by default creates special virtual input
output device DLL, and host applicaiton should define event handlers for this
device. Host application can be console oriented or windowed or other and
must define this DLL device behavior self.

All data and routines of MiniMono are stored in a single database and
MiniMono works with database as a MiniM with the ”%SYS” database.
So, common recommendations can incluse installing MiniM Database Server
for special instrumental purpose to prepare the ”%SYS” databse and use
prepared database next with a target host application. Host application
developer can change system routines set as need or does not use any routines.

MiniMono does not support MiniM debugger, so if developer want to de-
bug MUMPS routines, he must use special MiniM Database Server instance
and import debugged routines into MiniMono database.

Functions and behavior of MiniM Embedded Edition is the same as in
the full MiniM Database Server of the same version. As such as within
MiniM Database Server, MiniMono can use the same ZDLL and ZDEVICE

6.2. DATA STRUCTURES 161

extensions, system functions, transactions, system and user-defined routines.
MiniMono contains some limitation, listed in special topic ”Difference list”.

MiniMono installs with samples, and with utilities:

minimonostd.exe Command-line utility to get input from stdin and
output data to stdout

minimonocon.exe Console utility, gets input from keyboard and out-
puts data to console with processing escape se-
quences

minimonore.exe MiniMono Routine Editor, utility to edit, compile,
export and import routines, bytecodes and globals

minimonoge.exe MiniMono Global Editor, utility to view and edit
globals

minimne.exe Utility to edit files with character collation defini-
tions

MiniMono uses the same documentation as such as full MiniM Database
Server.

To install MiniMono with target host application it is enough to copy to
target computer files minimono.dll into the directory wich is accessible for
host application. It is not need any other installation steps or registrations.

6.2 Data structures

MiniMono use the same data structures as such as ZDLL modules and the
same calling conventions and data encodings.

Main data transfer structure is a MINIM STR structure. This structure
can contain an ordinal byte sequence as such as numbers. The data type
have been places is determined by special field len or type. Host application
can allocate memory only for really used length, for example only for 100
bytes plus length for special field len or type.

On send and receive data to and from MiniMono context host applica-
tion myst create appropriate data structures with need memory class. On
call back host application MiniMono virtual machine send pointers to own
internal data structures.

To interact with MiniMono virtual machine host application use the same
data structure as such as ZDLL modules, it is ZDLLCB structure. MiniMono

162 CHAPTER 6. MINIMONO

virtual machine creates pointer to this structure on creation. Structure con-
tains set of pointers to functions to call MiniMono context. For MiniMono
it is set of direct call functions and for ZDL modules it is set of call-back
functions.

For MiniMono virtual machine initialization is is used MINIMONOVM
structure. This structure contains virtual machine parameters. All structure
fields must be filled by host application, but cbfunc field is initialized by
MiniMono virtual machine with real pointers to functions.

To simplify initialization MiniMono intend special function to fill MIN-
IMONOVM structure with default values. Default values was selected by
typical parameters of most widely used personal application requirements.
After getting default values host application must fill application-specific
differences of MiniMono virtual machine parameters, real data file location
and DLL device event handlers if they are present.

DLL device event handlers are fully compatible with the same event han-
dler for ZDEVICE virtual devices with some exceptions: 1) DLL device can
be only one and event handlers have not any device instance context and 2)
device have not open and close event handlers.

MINIMONOVM fields list:

DataFile Database file name, can be specified full or relative
path.
Default value NULL, must be set by host applica-
tion

ReadOnly Use database in read only (1) mode or write is
allowed (0). If database used in read only mode,
MiniMono does not run write daemons.
Default value 0, write enabled.

JournalingEnabled Enabled (1) or disabled (0) database journaling.
This field used id database write was allowed. If
journaling was disabled (0), MiniMono does not
run journal daemon and cannot roll back globals
changes on rollback transactions.
Default value 1, journaling enabled.

6.2. DATA STRUCTURES 163

LockAreaSize Size of locking table for lock commands in
megabytes. While MiniMono works in single-user
mode, application developer can estimate lock ta-
ble size by his application requirements. In single
user mode locking does not required, but can be
used becouse commands can be present in routines.
If locking table space owerflows, process still wait
free space, but no other process can remove locks,
so this space must be enough.
Default value 1 MB.

RoutineCacheSize Size of bytecode cache in megabytes. If routine use
small number of routines, host application devel-
oper can specify small value, and if application use
many routines, increasing this value can increase
performance.
Default value 1 MB.

DeviceTableSize Number of input-output devices can be created by
MiniMono including default DLL device.
Default value 4.

DeviceNameSize Maximum lenght of device to distinquish device
names.
Default value 400 bytes.

DBCacheSize Global’s cache size in megabytes. It is recom-
mended value of cache in consider that MiniMono
virtual machine must place data structures in host
application’s address space and a really available
operating memory on computer. If value of global
cache is much more than phisically available, speed
can be decreased by swap operations.
Default value 100 MB.

NullSubscripts Enabled (1) or disabled (0) null subscripts in local
and global variables.
Default value 0, null subsctipts usage raise an er-
ror.

TransactLevelLimit Maximum number of transaction level.
Default value 255.

TrapOnEof Need (1) or not (0) generate an <ENDOFFILE>
error if current device reach end of file.
Default value 1, if end of file reached, MiniMono
raise an error.

164 CHAPTER 6. MINIMONO

FrameCount Maximum number of stack frames for subroutines
and xecute commands.
Default value 1024.

JournalCache Size of journal cache in megabytes.
Default value 4 MB.

LocaleFileName Name of file of character definition (nat file) or null
value to use default characters collation rules.
Default value NULL, host application can set to
custom collation file or use one of MiniM installed,
or don’t use special collation rules.

ProcessStorage Size of local variable storage in megabytes.
Default value 8MB.

Default values for DLL device event handlers are empty pointers. If
host application specify some event handler, MiniMono call this functions on
device operations.

6.3 Direct calls

Direct MiniMono virtual machine call is intended to execute MUMPS com-
mands sequences, evaluate MUMPS expression values, data casting to strings
or to numbers, global and local variables operations, and call subroutines.

Host application for each MiniMono call must create data structures, fill
by data in own memory and if need, structures to receive data from Min-
iMono. MiniMono application interface was built without additional mem-
ory allocation-free functions and all operations are made in host application
memory or in MiniMono internal data structures.

Direct MiniMono virtual machine calls are the same as ZDLL calls and
return error codes have prefixes ZDLL.

To get real pointers to functions host application must create MiniMono
virtual machine. This operation fills up pointers to own functions in cbfunc
field ov MINIMONOVM structure.

After MiniMono virtual machine terminates, host application must not
call this function even pointers are not null.

6.4. CALLS BACK 165

6.4 Calls back

On direct calls execution MiniMono virtual machine executes commands and
MUMPS routine can call principal device DLL. On this events MiniMono
calls host application back.

On call back MiniMono virtual machine pass control to specified by host
application functions. In the case of event handled does not present, Mini-
Mono prepares default actions as such for NULL device.

All data structures passed to event handlers to host applications are in-
ternal structures of MiniMono virtual machine and host application must not
write this data or make any additional decision about bytes are available or
not over really used number of bytes.

All event handlers must return value of 0 on success and non 0 on error.
If event handler return non 0 value, MiniMono virtual machine generates an
error and MUMPS routine can catch one by error handlers.

All defined event handlers in one’s part can call MiniMono context back
to evaluate expression, execute commands, cast data or change local or global
variables.

Event handler’s behavior, what was defined, the USE command’s options
and EOF state handling are fully defined by host application.

Read string (type dlldevreadstr t) and read character (type dlldevread-
char t) gots as a parameter value of timeout in milliseconds. If MUMPS
routine does not specify read timeout, MiniMono pass default value of -1. Id
MUMPS routine does not specify read lenght, MiniMono pass default value
of -1.

MiniMono virtual machine assume that host application developer self
creates EOF state handling and event handlers are coherent by this state.
EOF get event handler can be called by MiniMono virtual machine in any
context repeatedly.

DLL device events have not open and close handlers. This device is a
principal input-output device and cannot be directly created or closed, so
have not open and close options. Host application developer must create
initialization and deinitialization code for DLL device structures before Min-
iMono virtual machine creation and after termination.

166 CHAPTER 6. MINIMONO

6.5 Difference list

MiniM Embedded Edition contains all functionality of the full MiniM Database
Server except listed next.

MiniMono architecture does not contains special things to improve data
stability and process protection (process and daemon guardians).

MiniMono does not use any external settings stored in INI files or in
Windows registry, all settings host application must store and use self.

MiniMono does not implement devices with types CON, STD and TNT,
becouse user interface host application must implement self. MiniMono does
not make any limitations for application type - console, windowed or any
other.

MiniMono does not implement device with MEM type, becouse it is
interprocess-oriented device and MiniMono does not support multiple MUMPS
jobs.

MiniMono automatically creates special files - log minim.log, before image
journal minim.bij and journal files in the same directory where datafile is
located. So, host application must place database in separate subdirectory.
Different databases can be places in one directory for different applications
if ones use database in read only mode.

The JOB command does not implemented becouse MiniMono is a single-
user MiniM implementation.

MiniMono does not support MiniM debugger becouse MiniM debugger
have multiprocess-oriented architecture.

System variable $JOB returns thread number of operating system instead
of process number as in full MiniM Database Server.

System variable $ZPARENT always returns value of 0, because MiniMono
job does not have any parent MUMPS job.

System variable $ZVERSION contains product name MiniMono instead
of MiniM to distinquish job context for MUMPS routines.

MiniMono always have instance name as ”MINIMONO”. It is virtual
instance name and this name have all MiniMono virtual machines. In the
same time on the computer can be installed MiniM instance with the same
name and one and MiniMono machines does not intersects by shared memory
between each other.

6.6. MINIMONO CHUI TOOLS 167

Character definition file (collation definition) can be placed in any sub-
directory and have any name, unlike of MiniM Database Server.

MiniMono supports only one database and database must have only one
root datafile without extents. Database can have any size. Database always
have name of ”%SYS”.

MiniMono does not implement automatic data mapping for globals and
routines into other databases, becouse supports only one database.

Additionally with MiniM Database Server devices MiniMono adds one
more special virtual device DLL. This device creates automatically as a prin-
cipal input-output device. Host application must specify what device event
handlers are implemented. For unimplemented events MiniMono use default
behavior as such as for NULL divice - write lost data and read return control
immediately with empty data, system variables for current device returns
default values. Host application can defined all events behavior entirely,
MiniMono does not make any limitations.

The HALT command in MiniMono does not terminate host application,
but terminates current call to MiniMono. After next call was terminated by
the HALT command, host application can call MiniMono again, for example
execute commands or evaluate expression.

MiniMono does not exposes virtual machine performance counters as a
Windows performance counters (in edition for Windows), but all counters
are still accessible via special $view(”perf”) functions.

MiniMono virtual machine is a free of royalty software and does not re-
quires any license key.

Common MiniM Language Guide contains MiniMono differences from full
MiniM Database Server in appropriate guide topics.

6.6 MiniMono CHUI Tools

MiniMono Embedded Edition contains two CHUI utilities, minimonostd.exe
and minimonocon.exe. Is is CHUI shells to MiniMono module.

minimonostd.exe utility uses standard input-output channels of console
process - stdin and stdout. All input from stdin threated as a strings and
executes as a lines of MUMPS commands. All output which made by write
commands redirects to stdout channel.

minimonostd.exe utility may be used in a batch files with input-output
redirection.

168 CHAPTER 6. MINIMONO

Input-output behaviour of minimonostd.exe is full analog of |STD| device
of full MiniM Database Server.

minimonocon utility (minimonocon.exe for Windows and minimonocon
for Linux) uses input from the keyboard and outputs data to the console. On
the output utility uses escape sequence processing. On process start current
device |DLL| have mnemonic routine ”%CONX364”. If MUMPS commands
calls mnemonics, this routine must be imported with compilation.

Input-output behaviour of minimonocon is full analog of |CON| device of
full MiniM Database Server.

To specify process options both utilities support command-line parame-
ters. It is need to specify database file name, startup actions and process
parameters.

-d datafile option specify file name of MiniM database. This option is
mandatory.

Option -n natfile specify the name of character collation file. This option
is optional, but if neet to edit globals with national characters, this option is
much recommended to make correct global records.

-r readonly option show need or not process use this database in readonly
mode. If option argument is not 0, process use database in readonly mode.
By default write allowed.

-c cacheinmegbytes option specify size of database cache in megabytes. If
option was not specified, process use default value.

-j journaling option allow or not database journaling. If option argument
is 0, journaling is disabled. By default journaling is enabled. If process
disable journaling, trollback command cannnot revert database changes made
by process whithin transaction.

-p show prompt option specify need or not to be shown standard MUMPS
prompt. By default process show prompt, but prompt does not outputs while
executes packet commands from the -x option.

-x xecute option specify line of MUMPS commands need to be executed
on process start.

-x @xecutefile option specify name of file with lines of MUMPS commands
to execute on process start. Lines are executed sequentially, line-by-line.

-h option specify that process must terminate after -x option executed. If
-h option was not specified, after -x execution process goes to ordinal input
lines of commands from appropriate input.

6.7. MINIMONO GUI TOOLS 169

Example of MiniMono CHUI tools usage - create batch command file and
specify need options, for example:

minimonostd.exe -d empty.dat

Or

start minimonocon.exe -d sys.dat -j 0 -x "d ^%aNC"

Unlike of full MiniM Database Server, MiniMono CHUI tools minimonostd.exe
and minimonocon.exe starts execution at stack level 1, not 0, it is by design
of MiniMono internal architecture.

6.7 MiniMono GUI Tools

MiniM Embedded Edition installation contains two GUI tools, minimonore.exe
and minimonoge.exe. There are GUI shells for MiniMono.

minimonore.exe utility is a full-functional alalog of MiniM Routine Edi-
tor, except client side of MiniM Debugger. MiniMono architecture does not
implement MiniM Debugger.

All other functionality of MiniMono Routine Editor are the same as
MiniM Routine Editor, including rouine editing, preprocessor support (if
server-side routines are imported from install.rou), export and import of
routines and globals.

MiniMono Routine Editor supports command-line switches to specify
database file and routine to open.

Option -d datafile specify the name of MiniM database file to use. This
option is optional, and if datafile does not specified, utility lets to select
datafile.

Option -n natfile specify the name of character collation file. This option
is optional, but if neet to edit globals with national characters, this option is
much recommended to make correct global records.

Option -r routine specify the name of routine to open at start. This
option is optional.

Example:

minimonore.exe -d sys.dat -r %BACKUP

170 CHAPTER 6. MINIMONO

minimonoge.exe utility is a MiniMono Global Editor, full-functional ana-
log of MiniM Global Editor, but for MiniMono.

MiniMono Global Editor supports command-line switches to specify database
file and global to open.

Option -d datafile specify the name of MiniM database file to use. This
option is optional, and if datafile does not specified, utility lets to select
datafile.

Option -g global specify the name of global to open at start of MiniMono
Global Editor. This option is optional.

Option -n natfile specify the name of character collation file. This option
is optional, but if neet to edit globals with national characters, this option is
much recommended to make correct global records.

Example:

minimonoge.exe -d sys.dat -g ^ROUTINE

6.8 MiniMonoX

Library MiniMonoX.dll is an ActiveX interface to the MiniMono library
(MiniM Embedded Edition) and transforms calls from OLE Automation in-
terfaces to the internal MiniMono interfaces. Before run this ActiveX com-
ponent on the client computer must be placed in accessible directory both
components - minimonox.dll and minimono.dll. MiniMonoX library must
be registered after installation running the following commands in Windows
console or inside installer:

regsvr32 minimonox.dll

In depends of installer purposes can be used different options of the
regsvr32 command or special WinAPI calls for registering ActiveX compo-
nent.

MiniMonoX library was made in both variants - for x86-32 and for x86-64.
To use proper version MiniMonoX must be used with the same bit technology
as MiniMono component.

MiniMonoX library implements two ActiveX objects:

MiniMono.ServerString

MiniMono.VM

6.8. MINIMONOX 171

MiniMono.VM type was intended for connection from ActiveX interface
to MiniMono virtual machine, call MiniMono and for receiving ivents of prin-
cipal device. Internal type MiniMono.ServerString was intended for storing
and transforming data between ActiveX interfaces and internal data types,
used by MiniMono. Some part of MiniMono.VM object methods has un-
derstudy with Str suffix. In this case main function works with data in
full format in MiniMono.ServerString object, functions with Str suffis works
with ordinal OLE Automation strings (BSTR). MiniMono.ServerString ob-
jects can accept and store all bytes, including unused in ordinal strings, for
example, binary data for $lb() structures, zero bytes, and correctly translates
all data from internal representation from Unicode (for OLE Automation) to
the standard ANSI sequences of bytes.

Architecture of MiniMono virtual machine make some limitation for calls
from the client application - 1) MiniMono.VM object can be created only in
one instance inside of client application and 2) with one datafile can work in
one moment only one MiniMono instance.

Common scheme of work

Common scheme of work with MiniMonoX object consists of creation
and removing of object MiniMono.VM, initializing by specifying of datafile,
localization file, cache settings and other options, creating and terminatinf
virtual machine of MiniMono, and calls to created virtual machine. Objects
of MiniMono.ServerString type and ordinal strings are used for data transfer
and transform by needs.

Example on VBS:

’ create ActiveX object

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

’ initialize virtual machine

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

’ create virtual machine

MiniMono.CreateVM

’ ...

’ calls to MiniMono virtual machine

’ ...

’ free virtual machine

MiniMono.FreeVM

172 CHAPTER 6. MINIMONO

’ free ActiveX object

Set MiniMono = Nothing

To use special behaviour of principal device there need to be defined set
of principal device event handlers in host application:

Dim MiniMono

Set MiniMono=WScript.CreateObject("MiniMono.VM","MiniMono_")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "w 123"

MiniMono.FreeVM

Set MiniMono = Nothing

Sub MiniMono_DevWriteStr(Str)

WScript.Echo str.Value

End Sub

Here function WScript.CreateObject has been used in two-argument form
with definition of prefix for event handlers. Names of event handlers in VBS
hosts consists of this specified prefix (defined by developer) and name of
event handler (defined by ActiveX object), for example:

DevWriteStr

DevWriteChar

DevWriteNL

Instead of name prefix in VBS hosts can be used any string, choosed
by developer. Other runtime environments must use call conventions and
naming conventions supported by this runtime environment.

MiniMono virtual machine can be created only once in host application
and principal device can be only one, so device event handlers does not con-
tain identification arguments of current virtual machine instance and device
instance.

6.8. MINIMONOX 173

6.8.1 MiniMono.VM properties

Properties of MiniMono.VM object must be assigned between creation of ob-
ject and creation of MiniMono virtual machine by this object. This properties
are used for initialization of virtual machine. After creation of MiniMono vir-
tual machine this properties are not affected, but still accessible for read and
write.

Example:

Dim MiniMono

’ create object

Set MiniMono = WScript.CreateObject("MiniMono.VM")

’ assign initial values

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

’ create virtual machine

MiniMono.CreateVM

DataFile

Property DataFile has an ordinal string type and must point to a datafile
whose must be used as a database file by MiniMono virtual machine. Path
pointed to this file may be absolute as such as relative from current directory,
or a datafile must be in one of directories listed in the PATH environment
variable.

Property DataFile must be specified mandatory, it is minimum of infor-
mation need to start virtual machine and has not default value or values.

LocaleFileName

Property LocaleFileName has an ordinal string type and points to lo-
calization file NAT, which need to be used for collation operations and to
define which bytes are letters in upper or lower cases and which bytes are let-
ters. This file may be specified by absolute path or relative from the current
directory or must be found in directories listed in the PATH environment
variable.

Property LocaleFileName is optional and by default MiniMono virtual
machine uses internal default collation table.

174 CHAPTER 6. MINIMONO

ReadOnly

Property ReadOnly has an integer type and if not equel by zero, Mini-
Mono virtual machine runs in read only mode.

Property ReadOnly is optional and by default virtual machine uses datafile
for reading and writing.

JournalingEnabled

Property JournalingEnabled has an integer type and if not equal by zero,
journaling of the database is disabled.

Property JournalingEnabled is optional, and by default journaling is en-
abled. If journaling was disabled, virtual machine does not journal any global
changes and TROLLBACK command does nothing.

LockAreaSize

Property LockAreaSize has an integer type and defines size of memory
area need to be used by virtual machine to store information about locks in
megabytes.

MiniMono virtual machine has special architecture for only one process,
so applications was designed spesially for MiniMono does nor requires locking
operations by LOCK command.

Property LockAreaSize is optional, by default virtual machine use mem-
ory area by 1 megabyte, and values need to be between 1 and 64 megabytes.
Minimum size of 1 megabytes need to be reserved for internal locking oper-
ations to sinchronize job and internal daemons.

RoutineCacheSize

Property RoutineCacheSize has an integre value and defines size of cache
for compiled bytecode in megabytes.

Property RoutineCacheSize is optional, by default virtual machine uses
1 megabyte and value must be between of 1 and 64 megabytes.

DeviceTableSize

6.8. MINIMONOX 175

Property DeviceTableSize has an integer type and defines how much de-
vices can be opened by job in one time. Property is optional and must be
between of 4 and 1000.

DeviceNameSize

Property DeviceNameSize has an integer type and defines maximum lenght
of device name whose can use job. Property is optional, value by default is
400.

DBCacheSize

Property DBCacheSize has an integer type and defines size of memory
used by global’s cache in megabytes. Value by default is 100 megabytes.
Minimum value is 1 megabyte. For 32-bit version of MiniMono maximum
value is 1 gigabyte and for 64-bit version maximum value has no limits.

NullSubscripts

Property NullSubscripts has an integer type and defines allow or not
empty strings as a subscript values for local and global variables. If this
property has zero value, this means that empty strings does not allowed as a
subscript value, otherwise allowed. By default for compatability with legacy
MUMPS systems empty strings does not allowed.

TransactLevelLimit

Property TransactLevelLimit has an integer type and defines maximum
level of transactions in process. Value by default is 255, minimum value is 1
and maximum is 32000.

TrapOnEof

Property TrapOnEof has an integer type and defines device behaviour
by defaut on detection end of stream to read. If this value is not 0, devices
generate error. If value is 0, devices up system variable $zeof. By default for
compatability with legacy applications devices raises error. Device behaviour
on detection end of read is depended of device type and applies only to devices
for which this state can be defined, for example disk files or externally defined
device in external DLL/ SO (ZDEVICE).

176 CHAPTER 6. MINIMONO

FrameCount

Property FrameCount has an integer type and defines maximum level of
stack frames of subroutines calls. This property is optional for specification
and by default this value is equal to 1024. Minimum value is 16, Maximum
is 131072.

JournalCache

Property JournalCache has an integer type and defines size of cache of
journal buffer in megabytes. This property is optional for specification, value
by default is 8 megabytes. Munimum value is 1 megabyte, maximum for 32-
bit architecture is 64 megabytes and for 64-bit architectures this value has
no limits.

ProcessStorage

Property ProcessStorage has an integer type and defines size of memory
for local variables in megabytes. This property is optional and has default
value of 8 megabytes. Minimum value is 1 megabyte, maximum for 32-bit
architectures is 64 megabytes and for 64-bit architectures this property has
no limits.

6.8.2 MiniMono.VM functions

CreateVM

Function CreateVM creates instance of MiniMono virtual machine by
initial settings specified by properties. Instance of MiniMono virtual machine
can be created only one per process of operating system and only one instance
per datafile.

Return values are: 0 if virtual machine was created successfully, 1 if
instance of virtual machine already was created (in this or in other process
for the same datafile) and 2 on other errors - not enought memory or internal
operating system’s objects.

Example:

6.8. MINIMONOX 177

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.FreeVM

Set MiniMono = Nothing

After function CreateVM any changes of values of properties are not
affected and does not accepted.

FreeVM

Function FreeVM terminates instance of MiniMono virtual machine. Re-
turn value is absent. If ActiveX object does not contain active instance, this
function does do anything.

Example:

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.FreeVM

Set MiniMono = Nothing

EvalStr

Function EvalStr calculates value of argument as a MUMPS expression
in MiniMono dialect. Argument is a string (BSTR type) and return value is
a string (BSTR type) with evaluation result.

Example:

178 CHAPTER 6. MINIMONO

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

WScript.Echo MiniMono.EvalStr("$zv")

MiniMono.FreeVM

Set MiniMono = Nothing

Eval

Function Eval calculates value of argument as a MUMPS expression in
MiniMono dialect. Argument is an object of MiniMono.ServerString type
and return value is an object of MiniMono.ServerString type with evaluation
result.

Example:

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

Dim Tmp

Set Tmp = WScript.CreateObject("MiniMono.ServerString")

Tmp.Value = "$zv"

Dim Res

Set Res = MiniMono.Eval(Tmp)

WScript.Echo Res.Value

6.8. MINIMONOX 179

MiniMono.FreeVM

Set MiniMono = Nothing

GetError

Function GetError return value of last occured error and return type is
an object of MiniMono.ServerString.

Example:

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

WScript.Echo "Undefined: " & MiniMono.EvalStr("unknown")

Dim ServerString

Set ServerString = MiniMono.GetError

WScript.Echo ServerString.Value

MiniMono.FreeVM

Set MiniMono = Nothing

GetErrorStr

Function GetErrorStr returns value of last occured error and return type
is a string (BSTR type).

Example:

180 CHAPTER 6. MINIMONO

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

WScript.Echo "Undefined: " & MiniMono.EvalStr("unknown")

WScript.Echo MiniMono.GetErrorStr()

MiniMono.FreeVM

Set MiniMono = Nothing

Execute

Function Execute executes one line of commands defined by argument
with type of MiniMono.ServerString. Return value is an integer number
with value of error code:

0 Function executed successfully
1 Argument is not valid MUMPS commands becouse con-

tains syntax errors
5 Error in database or in memory or other hardware or in

operating system
6 Executed code did call the HALT command

Example:

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

6.8. MINIMONOX 181

Dim Commands

Set Commands = WScript.CreateObject("MiniMono.ServerString")

Commands.Value = "s list=$lb(123,456,$h)"

MiniMono.Execute Commands

Dim Tmp

Set Tmp = WScript.CreateObject("MiniMono.ServerString")

Tmp.Value = "list"

Dim List

Set List = MiniMono.Eval(Tmp)

Dim Element

Set Element = WScript.CreateObject("MiniMono.ServerString")

MiniMono.ListGet List, 1, Element

WScript.Echo "Before: " & Element.Value

Element.Value = "next"

MiniMono.ListSet List, 1, Element

MiniMono.ListGet List, 1, Element

WScript.Echo "After: " & Element.Value

MiniMono.FreeVM

Set MiniMono = Nothing

ExecuteStr

Function ExecuteStr executes one line of commands defined by argument
with type of BSTR, ordinal string. Return value is an integer number with
value of error code:

0 Function executed successfully
1 Argument is not valid MUMPS commands becouse con-

tains syntax errors

182 CHAPTER 6. MINIMONO

5 Error in database or in memory or other hardware or in
operating system

6 Executed code did call the HALT command

Example:

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "s list=$lb(123,456,$h)"

Dim Tmp

Set Tmp = WScript.CreateObject("MiniMono.ServerString")

Tmp.Value = "list"

Dim List

Set List = MiniMono.Eval(Tmp)

Dim Element

Set Element = WScript.CreateObject("MiniMono.ServerString")

MiniMono.ListGet List, 1, Element

WScript.Echo "Before: " & Element.Value

Element.Value = "next"

MiniMono.ListSet List, 1, Element

MiniMono.ListGet List, 1, Element

WScript.Echo "After: " & Element.Value

MiniMono.FreeVM

Set MiniMono = Nothing

6.8. MINIMONOX 183

SetTest

Function SetTest changes in runtime value of system variable $TEST.
Argument has type of integer number and, if was value of 0, system variable
$TEST changes to 0, otherwize changes to 1.

This func tion has not return value.

Function SetTest was intended to be applied in context of callback calls
in device event handlers when value of $TEST need to be changed by device
call conventions, for example if reading was with timeout but timeout has
expired.

Example:

MiniMono.SetTest 1

SetCtrlBreak

Function SetCtrlBreak changes internal state of MiniMono virtual ma-
chine into interrupt context. MiniMono virtual machine on execution or
expression evaluation periodically checks interruption state and, if interrupt
indicator is on, virtual machine raises an error INTERRUPT.

Argument is an integer number and, if has value of 0, internal interruption
state does not changes, otherwiae changes.

Function SetCtrlBreak was intended to use in context of callback calls in
device event handlers, or need to be called inside of handler of Ctrl+Break
event, or when was pressed Ctrl+C or in other context which need to be
interrupted.

This function can be called asinchronously too, not only inside of device
event handlers.

Example:

MiniMono.SetCtrlBreak 1

ListGet

184 CHAPTER 6. MINIMONO

Function ListGet returns one element of list structure.

First argument, with type of MiniMono.ServerString, must contains value
of list structure, second argument, integer number, must define position of
list item and third argument, reference to object of MiniMono.ServerString,
accepts list item value.

This function has not return value.

If list item have undefined value, this function return empty string as a
list item.

Example:

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "s list=$lb(123,456,$h)"

Dim Tmp

Set Tmp = WScript.CreateObject("MiniMono.ServerString")

Tmp.Value = "list"

Dim List

Set List = MiniMono.Eval(Tmp)

Dim Element

Set Element = WScript.CreateObject("MiniMono.ServerString")

MiniMono.ListGet List, 1, Element

WScript.Echo Element.Value

MiniMono.ListGet List, 2, Element

WScript.Echo Element.Value

MiniMono.ListGet List, 3, Element

WScript.Echo Element.Value

6.8. MINIMONOX 185

MiniMono.FreeVM

Set MiniMono = Nothing

ListSet

Function ListSet changes item of lilst structure into specified value.

First argument, with type of MiniMono.ServerString, contains source list
structure where list item need to be changed. Second argument, an inte-
ger number, defines position of list item. Third argument, object of Mini-
Mono.ServerString, defines new list item value.

This function has not return value.

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "s list=$lb(123,456,$h)"

Dim Tmp

Set Tmp = WScript.CreateObject("MiniMono.ServerString")

Tmp.Value = "list"

Dim List

Set List = MiniMono.Eval(Tmp)

Dim Element

Set Element = WScript.CreateObject("MiniMono.ServerString")

MiniMono.ListGet List, 1, Element

WScript.Echo "Before: " & Element.Value

Element.Value = "next"

186 CHAPTER 6. MINIMONO

MiniMono.ListSet List, 1, Element

MiniMono.ListGet List, 1, Element

WScript.Echo "After: " & Element.Value

MiniMono.FreeVM

Set MiniMono = Nothing

ListLength

Function ListLength returns number of items in list structure including
undefined items.

Argument has type of MiniMono.ServerString and defines list structure.

Example:

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "s list=$lb(123,456,$h)"

Dim Tmp

Set Tmp = WScript.CreateObject("MiniMono.ServerString")

Tmp.Value = "list"

Dim List

Set List = MiniMono.Eval(Tmp)

WScript.Echo MiniMono.ListLength(List)

MiniMono.FreeVM

Set MiniMono = Nothing

6.8. MINIMONOX 187

Text

Function Text decorates source string by MUMPS language syntax con-
ventions. First argument, with type of MiniMono.ServerString, defines source
string as a byte sequence. Second argument defines object of MiniMono.ServerString,
which must accept result of decoration.

Function Text executes text decoration as such as function $ZQUOTE to
create correct string in MUMPS syntax for strings with nonprintable bytes.
Function substitutes instead of nonprintable bytes concatenation operator
and $CHAR functions, and doubles, if need, double quotes. Function counts
bytes as unsigned characters.

Example:

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "s list=$lb(123,456,$h)"

Dim Tmp

Set Tmp = WScript.CreateObject("MiniMono.ServerString")

Tmp.Value = "list"

Dim Res

Set Res = MiniMono.Eval(Tmp)

WScript.Echo Res.Value

Dim Str

Set Str = WScript.CreateObject("MiniMono.ServerString")

MiniMono.Text Res, Str

WScript.Echo Str.Value

188 CHAPTER 6. MINIMONO

MiniMono.FreeVM

Set MiniMono = Nothing

TextStr

Function Text decorates source string by MUMPS language syntax con-
ventions. Argument, with type of ordinal string (BSTR type), defines source
string as a byte sequence. Function returns ordinal string (BSTR type) with
the result of decoration.

Function TextStr executes text decoration as such as function $ZQUOTE
to create correct string in MUMPS syntax for strings with nonprintable bytes.
Function substitutes instead of nonprintable bytes concatenation operator
and $CHAR functions, and doubles, if need, double quotes. Function counts
bytes as unsigned characters.

Example:

Dim MiniMono

Set MiniMono = WScript.CreateObject("MiniMono.VM")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

WScript.Echo MiniMono.TextStr("str""str")

MiniMono.FreeVM

Set MiniMono = Nothing

6.8.3 MiniMono.VM events

Events of object MiniMono.VM are called from inside of context of Mini-
Mono virtual machine when appropriate event occurs. In other word, events
are fired when MUMPS application need to execute some operations with
principal device. Event handlers can be assigned independently from each
other, and if one or mor eevent handlers was not assigned, MiniMono virtual
machine uses default behaviour for this operation.

6.8. MINIMONOX 189

All event handlers has return value as an integer number, and must return
0 on success or other value on error. If execution environment of ActiveX
object does not supports return value of event handlers, MiniMono virtual
machine counts this as success execution by default.

DevUse(PairsCount,ParamPairs)

Event handler DevUse calls by MiniMono virtual machine on eecution of
the USE command for principal device.

First argument id an integer number and defines number of pairs of kay
and values was passed to the USE command as options of command. Second
argument is an array of values in the order of key of option + value of option.
Thia array is passed as array of VARIANT, one item of array is object of
VARIANT. If name of option or value of option was omitted, there are passed
an empty string.

Example:

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

Dim Val

Dim Expr

Set Expr =

WScript.CreateObject("MiniMono.ServerString")

Expr.Value = "$zv"

Set Val = MiniMono.Eval(Expr)

WScript.Echo Val.Value

MiniMono.ExecuteStr "u $p:(/P1=123:/P2=456)"

190 CHAPTER 6. MINIMONO

MiniMono.FreeVM

Set Expr = Nothing

Set MiniMono = Nothing

Sub MiniMono_DevUse(PairsCount, Pairs)

For Counter = 0 to PairsCount - 1

ParamName = Pairs(Counter * 2)

ParamValue = Pairs(Counter * 2 + 1)

WScript.Echo

"DevUse, Parameter = " & ParamName &

" Value = " & ParamValue

Next

End Sub

DevWriteStr(Value)

Event handler DevWriteStr calls when MUMPS application need to exe-
cute the WRITE command to principal device.

Argument of event handler is an object of type MiniMono.ServerString
and contains set of bytes need to be written to the principal device. Write
method in real must be defined by developer.

Example:

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "w 123"

MiniMono.FreeVM

6.8. MINIMONOX 191

Set MiniMono = Nothing

Sub MiniMono_DevWriteStr(Str)

WScript.Echo

"Event DevWriteStr fired, str = " &

str.Value

End Sub

DevWriteChar(Value)

Event handler DebWriteChar executes when MUMPS application exe-
cutes the WRITE command with symbol code.

Argument of event handler have a type of an integer number and here
can be passes negative as such as positive codes. Method of writing this
code must be defined by developer. In most cases writing og code means
writing one byte with this code, but in some cases developers can define
special behaviour for specially reserved codes (mainly negative values), and
replace by such way, the USE command.

Example:

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "w *122,*123"

MiniMono.FreeVM

Set MiniMono = Nothing

Sub MiniMono_DevWriteChar(Symbol)

192 CHAPTER 6. MINIMONO

WScript.Echo

"Event DevWriteChar fired, Symbol = " & Symbol

End Sub

DevWriteNL()

Event handler DevWriteNL executes on execution formatted output of
line feed and has not arguments.

Example:

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "w !!"

MiniMono.FreeVM

Set MiniMono = Nothing

Sub MiniMono_DevWriteNL

WScript.Echo "Event DevWriteNL fired"

End Sub

DevWriteFF()

Event handler DevWriteFF executes on execution of formatted writing of
form feed (new page) and has not arguments.

Example:

6.8. MINIMONOX 193

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "w ##"

MiniMono.FreeVM

Set MiniMono = Nothing

Sub MiniMono_DevWriteFF

WScript.Echo "Event DevWriteFF fired"

End Sub

DevWriteTAB(TabCount)

Event handler DevWriteTAB executes when MUMPS code executes for-
matted writing with tabulation to the principal device. Argument TabCount
has an integer typr and contains value passed from the MUMPS code in the
tabulation argument of the WRITE command.

Example:

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "w ?5,?12"

194 CHAPTER 6. MINIMONO

MiniMono.FreeVM

Set MiniMono = Nothing

Sub MiniMono_DevWriteTAB(TabCount)

WScript.Echo

"Event DevWriteTAB fired, TabCount = " &

TabCount

End Sub

DevReadStr(Len,TimeOut,ReadString)

Event handler DevReadStr executes when the MUMPS code executes the
READ command for the principal device.

Argument Len has an integer type and contains how many bytes was
specified in the READ arguments for reading. If command READ was used
without specification of length for reading, this argument contains value of
-1. Maximum length for reading allowed is dependent of internal MiniM
architecture and is equal to 32 kilobytes.

Argument TimeOut has an integer type and contains number of millisec-
onds for read timeout. Command READ contains option for timeout in
seconds, but MiniMono virtual machine recalculates this value to millisec-
onds, so command READ can contain fractional values. If command READ
was used without timeout specification, this argument contains value of -1.

Argument ReadString has type of MiniMono.ServerString and event han-
dler must place into this object read result as a byte sequence. This byte
sequence will be used as a result of the READ command.

Example:

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

6.8. MINIMONOX 195

MiniMono.CreateVM

MiniMono.ExecuteStr "r str"

WScript.Echo "str after read is " &

MiniMono.EvalStr("str")

MiniMono.FreeVM

Set MiniMono = Nothing

Sub MiniMono_DevReadStr(Length, TimeOut, Str)

WScript.Echo "Event DevReadStr fired"

Str.Value = "answer"

End Sub

DevReadChar(TimeOut,ReadChar)

Event handler DevReadChar executes when MUMPS code execure the
READ command for one character (number of character code) from the prin-
cipal device.

Argument TimeOut has an integer number type and defines timeout in
milliseconds. Command READ contains option for timeout in seconds, but
MiniMono virtual machine recalculates this value to milliseconds, so com-
mand READ can contain fractional values. If command READ was used
without timeout specification, this argument contains value of -1.

Argument ReadChar has type of VARIANT. Event handler should assign
to this argument integer number of code has been read. MiniMono virtual
machine counts numbers of code as unsigned characters (bytes) with code
from 0 to 255.

Example:

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

196 CHAPTER 6. MINIMONO

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "r *ch"

WScript.Echo

"ch after read is " & MiniMono.EvalStr("ch")

MiniMono.FreeVM

Set MiniMono = Nothing

Sub MiniMono_DevReadChar(TimeOut, ReadCode)

WScript.Echo "Event DevReadChar fired"

ReadCode = 123

End Sub

DevGetX(Value)

DevGetY(Value)

Event handlers DevGetX and DevGetY executes when MUMPS code
execute reading of values of system variabls $X and $Y for the principal
device.

Argument Value has type of VARIANT and event handler should assign
to this argument values of $X or $Y.

What does mean values of system variables $X and $Y of the principal
device in current application developer should define self.

Example:

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

6.8. MINIMONOX 197

MiniMono.CreateVM

MiniMono.ExecuteStr "s x=$x,y=$y"

WScript.Echo "values are: x = " &

MiniMono.EvalStr("x") &

", y = " & MiniMono.EvalStr("y")

MiniMono.FreeVM

Set MiniMono = Nothing

Sub MiniMono_DevGetX(XValue)

WScript.Echo "Event DevGetX fired"

XValue = 123

End Sub

Sub MiniMono_DevGetY(YValue)

WScript.Echo "Event DevGetY fired"

YValue = 456

End Sub

DevSetX(Value)

DevSetY(Value)

Event handlers DevSetX and DevSetY executes when MUMPS code ex-
ecute assignment to system variables $X and $Y for principal device.

Argument Value has type integer number and here is passed value as-
signed in the MUMPS code. If in MUMPS code value was not true integer,
MiniMono virtual machine casts this value to integer by MUMPS casting
convention.

What does mean values of system variables $X and $Y of the principal
device in current application developer should define self.

Example:

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

198 CHAPTER 6. MINIMONO

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "s $x=123,$y=456"

MiniMono.FreeVM

Set MiniMono = Nothing

Sub MiniMono_DevSetX(XValue)

WScript.Echo

"Event DevSetX fired, XValue = " & XValue

End Sub

Sub MiniMono_DevSetY(YValue)

WScript.Echo

"Event DevSetY fired, YValue = " & YValue

End Sub

DevGetKEY(KeyValue)

Event handler DevGetKEY executes when MUMPS code reads value of
system variable $KEY for principal device.

Argument KeyValue has type of MiniMono.ServerString and event han-
dler should assign to his property Value byte sequence correspondent to the
$KEY for principal device. Developer of event handler shold define self what
does mean value of $KEY for principal device. In most cases this variable
contains last read terminator.

Example:

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

6.8. MINIMONOX 199

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "s key=$key"

WScript.Echo "key has value " &

MiniMono.EvalStr("key")

MiniMono.FreeVM

Set MiniMono = Nothing

Sub MiniMono_DevGetKEY(Key)

WScript.Echo "Event DevGetKEY fired"

Key.Value = "abcd"

End Sub

DevSetKEY(KeyValue)

Event handler DevSetKEY executes when MUMPS code execute assign-
ing of system variable $KEY for the principal device.

Argument KeyValue has type of MiniMono.ServerString and his prop-
erty Value have a byte sequence of value passed from the MUMPS code on
assigning.

Developer should decide whate mean assigning of system variable $KEY
for principal device in developed application.

Example:

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

200 CHAPTER 6. MINIMONO

MiniMono.CreateVM

MiniMono.ExecuteStr "s $key=123"

MiniMono.FreeVM

Set MiniMono = Nothing

Sub MiniMono_DevSetKEY(Key)

WScript.Echo

"Event DevSetKEY fired: " & Key.Value

End Sub

DevZEOF(Value)

Event handler DevZEOF executes when MUMPS code execute reading
value of $ZEOF for principal device.

Argument Value has type VARIANT and in this variable shoulf be written
indicator 0 if reading did reached end of input byte sequence or not 0 if not.

All event handlers are in callback calling state, so they cannot create true
error raising as such as internal builtin devices when reach end of read state.
In common words, $ZEOF usage is much more recommended way to handle
end-of-file state of developed device.

Example:

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "s zeof=$zeof"

6.8. MINIMONOX 201

WScript.Echo "zeof value is: " &

MiniMono.EvalStr("zeof")

MiniMono.FreeVM

Set MiniMono = Nothing

Sub MiniMono_DevZEOF(ZEOF)

WScript.Echo "Event DevZEOF fired"

ZEOF = 1

End Sub

DevGetZA(KeyValue)

DevGetZB(KeyValue)

Event handlers DevGetZA and DevGetZB executes when MUMPS code
execute reading values of system variables $ZA and $ZB for principal device.

Argument KeyValue has type of MiniMono.ServerString and his property
Value must be assigned to byte sequence of variables $ZA and $ZB, and this
sequences will get MUMPS code.

What does mean values of system variables $ZA and $ZB must define
developer of principal device. Traditionally this variables are used for back-
ward compatibility with legacy code and other MUMPS systems to get some
device-specific states.

Example:

Dim MiniMono

Set MiniMono =

WScript.CreateObject("MiniMono.VM", "MiniMono_")

MiniMono.DataFile = "empty.dat"

MiniMono.DBCacheSize = 100

MiniMono.JournalingEnabled = 0

MiniMono.CreateVM

MiniMono.ExecuteStr "s za=$za,zb=$zb"

202 CHAPTER 6. MINIMONO

WScript.Echo "za value is: " &

MiniMono.EvalStr("za")

WScript.Echo "zb value is: " &

MiniMono.EvalStr("zb")

MiniMono.FreeVM

Set MiniMono = Nothing

Sub MiniMono_DevGetZA(ZA)

WScript.Echo "Event DevGetZA fired"

ZA.Value = 123

End Sub

Sub MiniMono_DevGetZB(ZB)

WScript.Echo "Event DevGetZB fired"

ZB.Value = 456

End Sub

6.8.4 MiniMono.ServerString properties

Value

Value is a property of MiniMono.ServerString object with type of simple
string. This property is accessible for read and write.

Length

Length is a property of MiniMono.ServerString object with type of Integer
and contains real bytes count been used in object. This property is accessible
for read and write. When assigned to value less than 0 property sets to value
0, when assigned to value greater than 32767, property sets to value 32767.

6.8.5 MiniMono.ServerString functions

GetAt(Pos)

Function returns integer as character code at position Pos, where position
is specified by integer. If Pos show outside of bytes are available, function
returns code -1. Character code is returned as integer from 0 to 255.

6.8. MINIMONOX 203

SetAt(Pos, Code)

Function replaces byte at position Pos to byte with code Code. Arguments
Code and Pos must be an integers. If value of Pos shows outside of bytes are
available, function does nothing.

Add(Val)

Function concatenates to internal object data data of other object Val
of type MiniMono.ServerString. Value of Val does not changes. If function
executes successfully, function return value 1, otherwise value 0.

AddStr(Val)

Function concatenates to internal object data bytes of string Val. Value
of Val does not changes. If function executes successfully, function return
value 1, otherwise value 0.

204 CHAPTER 6. MINIMONO

Chapter 7

MiniMono for Android

7.1 SDK Content

MiniMono SDK for Android consists of set of files need to be used for ap-
plication development for Android with embedding of MiniMono Embedded
Edition.

MiniMono SDK does not has installer and uninstaller, does not contains
any utilities need to be run on development computer and does not depends
of operating system on the development computer. To use the MiniMono
SDK for application development this file set is used with Android SDK and
any development tools for Android applications. Id developer need to edit
any MiniMono - specific files, there must be used full MiniMono installation
for development operating system. This custom files may be datafiles with
need set of routines, or routines, or globals, or collation files, or any others.
And, of course, can be used full MiniM Database Server as a developer tool
for MUMPS development.

MiniMono SDK distributes as a ZIP archive and after unpacking devel-
oper have the following subdirectories:

db Datafiles for MiniM, and by default this subdirec-
tory contains at least one ampty datafile empty.dat

doc MiniM documentation in the PDF format
examples Examples for Android in the Java language to use

with the Android SDK
include Header and interface files for low-level develop-

ment and integration of modules in C or Pascal
(FreePascal + Lazarus)

205

206 CHAPTER 7. MINIMONO FOR ANDROID

libs Compiled libraries libminimono.so + libmini-
monoj.so + libzini.so for different target Android
architectures and processors

routines Standard set of system routines for MiniM
src minimonoj and utils modules in the Java language

to develop applications with the Android SDK
zdevice Examples of development external ZDEVICE

modules in C and Pascal
zdll Examples of development external ZDLL modules

in C and Pascal

At the current time MiniMono SDK supports the following processor
architectures for Android:

armeabi Set of processors based on the ARM architecture,
32-bit.

x86 Set of processors based on the Intel/AMD x86-32
architecture, from the i386 and later, 32-bit.

arm64-v8a Set of processors based on the ARM, 64-bit.
x86 64 Set of processors based on the Intel/AMD x86-64,

64-bit.

At the current time mostly wide used are devices on Android based on
the ARM and x86 processors, and 64-bit processors are rarely used. In most
cases to develop application for Android including processor architectures of
armeabi and x86 are enought..

At the current time MiniMono SDK does not supports processor archi-
tectures of MIPS and MIPS64, becouse this processors use big-endian byte
order and MiniM does not ported to any of big-endian processor architecture,
such as MIPS, Itanium, SPARC, etc.

File libminimono.so contains module of MiniMono and is main executable
for MiniMono virtual machine. This file have full functionality of the other
MiniMono versions and fully compatible with MiniM by MUMPS language
dialect. This file is at the minimum need to embed MiniMono virtual machine
into Android application.

File libminimonoj.so is a JNI interface between Java and MiniMono. This
file is need to build application for Android using Java. Examples for Min-
iMono SDK contains Java code and are use this module. If developer uses

7.2. BUILDING APPLICATION 207

other language to develop Android application (C or Pascal or others), this
file is unneed.

File libzini.so is an external ZDLL module with external functions for
routine %INI. This routine is present in the standard MiniM set of system
routines, but default empty datafile empty.dat does not contain this routines.
If developers does not use the %INI routine, this file is unneed. Examples
for MiniMono SDK does not use this file.

7.2 Building Application

Applying of MiniMono SDK for Android was illustrated with Android SDK
from Google and main developer’s guide is on the site:

http://developer.android.com

On this site can be found any need tools, information for Android devel-
opment, building rules and application distribution rules.

Building of application for Android are illustrated on the Java language
as main execution context. If developers are used any other development
tools for application development for Android, only file libminimono.so and
header and interface file need to be used.

To create application need to include the tools subdirectory from the
Android SDK from Google into the search path (the PATH environment
variable). And, to create initial subdirectory set of application, need to be
used utility:

android create project

And here can be recommended to create batch file, with can automate
this operations, for example, to create application Example1 on Windows
x64 this file can be the followed:

set PATH=C:\Program Files (x86)\Android\

android-sdk\tools;%PATH%

md example1

android create project --target 1

--name example1 --path example1

--activity Example1

--package android.database.minimono

208 CHAPTER 7. MINIMONO FOR ANDROID

Here we create subdirectory example1 and inside of one this tool auto-
matically creates need subdirectories by default for example1 application,
with main Activity Example in the Java package

android.database.minimono

After creation of initial application skeleton we must add to this project
library files of libminimono.so and libminimonoj.so from the appropriate libs
subdirectory of the MiniMono SDK into the libs subdirectory of application
to make the following directory tree:

/example1

/libs

/armeabi

libminimono.so

libminimonoj.so

/x86

libminimono.so

libminimonoj.so

This so files from the MiniMono SDK are used in the /libs together with
other so files from project, if they are present, And, in this subdirectories we
must place external ZDLL and ZDEVICE so mosules if they are used in the
application.

On the build of application (to get the apk file) this libraries will be
inserted into the installer and on the target Android device will be used only
files with appropriate processor architecture.

In the /src subdirectory of the project we must place subdirectory /an-
droid, inside of one subdirectory /database, inside of one subdirectory /min-
imono, and inside of one the following files: minimonoj.java and utils.java.
So, we must get the following directory tree:

/src

/android

/database

/minimono

minimonoj.java

utils.java

7.2. BUILDING APPLICATION 209

This subdirectory structures was defined by conventions of the Java lan-
guage. And, in this subdirectories, we must place also files of examples
ExampleXXX.java to get full source file set for example.

Next, in the file /res/layout/main.xml need to create application interface
structure. In simple case this file can be replaced by the file main.xml from
the MiniMono SDK.

For proper MiniMono working this virtual machine requires data file.
MiniMono SDK contains subdirectory /db with empty datafile empty.dat.
All examples uses file transfer of this datafile thought the /assets/db sub-
directory of project. All files was placed into /assets and subdirectories of
/assets, apk creation tool embeds as is, in raw state. This files are accessible
inside of Android application throught the AssetManager object as pseud-
ofiles. Utilities from the file

/android/database/minimono/utils.java

are used by examples for file synchronization from the Assets storage into
the local file system on Android, by conventions of Android. This files af-
ter extracting are raw and true files in local filesystem and can be used as
datafiles and other files by MiniMono.

After preparing directory structure for Android application this project is
reaady for building. Android SDK recommends to use the ANT build system.
This system requires that the own /bin directory and /bin directory of the
JDK was in the search path (the PATH environment variable). So, may
be recommended create batch file with commands to automate this actions.
Windows version of this batch file can be the followed:

set ANT_HOME=c:\tools\apache-ant

set PATH=%ANT_HOME%\bin;%PATH%

set JAVA_HOME=C:\Program Files\Java\jdk1.8.0_20

set PATH=%JAVA_HOME%\bin;%PATH%

cd example1

ant debug

In the case of usage JDK of other versions or other directories here need
to be used real directory names.

After building project in the /bin subdirectory of project’s directory tree
will be final apk file, for example, example1-debug.apk.

210 CHAPTER 7. MINIMONO FOR ANDROID

To build release apk version need to be used appropriate utilities from
Google and build rules from Google to subscribe distribution file.

To place and install apk file on the Android device need to be used adb
utility with command line parameter

adb install

and to reinstall application with the parameters

adb install -r

with specifying what device need to be used and what apk file must be
installed.

All MiniMono examples uses very simple user interface, was made in the
Java language and build steps are the same.

To supply not only 32-bin processors arm and x86, but 64-bit processors
too, there need to include appropriate /libs subdirectories arm64-v8a and
x86 64 with libminimono.so and libminimonoj.so libraries.

All examples does not use external collation definition files nat, all exam-
ples use character collation rules by default. To use appropriate character
collation rule need to transfer this nat file too throught the /assets storage,
for eample in the /nat subdirectory, and after synchronisation specify real
local file name in MiniMono initialisation.

7.3 Assets Synchronisation Utility

Assets - this is additional structured file storage for Android application,
with content which does not transforms by apk builder in any case. This
files with all subdirectory structure transfers as is, in raw mode. This file
storage is used and recommended to transfer all additional files for Android
application.

To use in Android application module of MiniMono virtual machine devel-
oper must transfer at least one datafile. Optionally, by application developer
decision, can be transferred nat files, source code of routines in separate files
to import later into MiniMono context, or other files.

Instead of empty datafile, a sthis was dome in examples, develpers can
transfer special prepared datafile for MiniMono with need set of compiled
routines and initial global’s state.

7.4. EXAMPLES 211

Before transferring raw files in the /assets storage in the apk file develop-
ers must understand that Android developers can implement his own limits
for this fles by size. This limits can be applied by Google developers. In the
case of this limit was reached, application developer must split file content
to several files with smaller size and unite this data in the working applica-
tion on Android or use other source of data (for example, download from the
internet).

All files was transferred in the Assets storage, are accessible as special
pseudofiles, throught the AssetManager object. To place files from the assets
to local file system, to use by the MiniMono, this files must be copied from
the storage to local file system. All this actions do special utility class utils.

Syncronisation utilities for assets reads list of available in the storage files
and for each file checks existence of appropriate file in local file system If this
file exists, this file does not touch, otherwise this file creates and copies from
the assets storage as is, in initial state.

application developers for Android, of course, can use any other synchro-
nisation utilities for assets and any own application rules to synchronise files.

Before usage of assets synchronisation utilities file utils.java must be
placed in the project directory before build apk.

Function of class utils

public void syncAssetDir(String dir,

Context context, AssetManager assets)

executes synchronisation all of available files in the assets storage specifiled
in the dir subdirectory of assets.

Function of class utils

public String fileName(String dir,

Context context, String name)

returns real file name in the local file system correspondent to specified file
name and subdirectory of assets storage.

7.4 Examples

Examples for MiniMono for Android was made as applications in the Java
language with using Java object with JNI module (libminimonoj.so), and this
module calls to MiniMono virtual machine in the libminimono.so library:

212 CHAPTER 7. MINIMONO FOR ANDROID

import android.database.minimono.minimonoj;

import android.database.minimono.utils;

...

minimonoj MiniMono =

new minimonoj(CodePage);

minimonoj.MiniMonoVM init =

new minimonoj.MiniMonoVM(CodePage);

int ret = MiniMono.CreateMiniMono(init);

The screen of application consists of two controls - textbox and button.
Textbos displays outputted text, and button click handler terminates appli-
cation.

All examples use the same initialisation of MiniMono virtual machine:

MiniMono.GetDefaultSettings(init);

init.DataFile =

u.fileName(dbDir,

getApplicationContext(), dbFileName);

init.JournalingEnabled = 0;

Before initialisation applications do synchronisation of datafiles from the
assets storage:

utils u = new utils();

String dbDir = "db";

String dbFileName = "empty.dat";

u.syncAssetDir(dbDir,

getApplicationContext(), getAssets());

And virtual machine of MiniMono uses real local file name in the local
file system after synchronisation:

init.DataFile =

u.fileName(dbDir,

getApplicationContext(), dbFileName);

Next, examples executes sequence af calls to MiniMono virtual machine
and next terminates virtual machine by

7.4. EXAMPLES 213

MiniMono.FreeMiniMono();

Total application execution terminates by clicking to the button:

final Button btnClose =

(Button)findViewById(R.id.btnClose);

btnClose.setOnClickListener(

new View.OnClickListener() {

public void onClick(View v) {

finish();

}

});

Example Example1.java demonstrates evaluation of the MUMPS expres-
sion and reading of result. Result outputs to the textbox on the application’s
screen:

txtOut.append("Value of $zversion: " +

MiniMono.Read("$zversion") + "\n");

txtOut.append("Now is: " +

MiniMono.Read("$zdate($h,3)") + "\n");

Example Example2.java demonstrates execution of the set of MUMPS
commands where assign values to local variables and after this reads back
values of this local variables:

int n = 5;

MiniMono.Execute("f i=1:1:" +

n + " s a(i)=i*i");

for(int i = 1; i <= n; i++)

{

txtOut.append(

"Value of a(" + i + ") is: " +

MiniMono.Read("a(" + i + ")") +

"\n");

}

214 CHAPTER 7. MINIMONO FOR ANDROID

Example Example3.java demonstrates working with variables with list
structures. Example generates inside of MiniMono virtual machine value
with list structure and after this reads this value and calls to list functions
of MiniMono to display list length and each of list items:

MiniMono.Execute(

"s var=$lb($zv,$sy,$zd($h,8))");

String list = MiniMono.Read("var");

int n = MiniMono.ListLength(list);

txtOut.append(

"Actual length of the list is: " +

n + "\n");

for(int i = 1; i <= n; i ++)

{

txtOut.append("Item " + i + " : " +

MiniMono.ListGet(list, i) + "\n");

}

Nest this examples shows how on the Java side change values of Java
variables wit list structures:

list = "";

// set 1 list item

list = MiniMono.ListSet(

list, 1, "123456");

// set 2 list item

list = MiniMono.ListSet(

list, 2, "123.456");

// set 3 list item

list = MiniMono.ListSet(

list, 3, "Hello");

By the Java language conventions code cannot change value of the String
object passing by reference or pointer, so functions returns entire list value
to reassign entire value of the Java local variable.

Next this examples demonstrates usage of string decoration function by
MUMPS syntax conventions. Function MiniMono.Text returns string with
MUMPS syntax conventions. Function transforms source byte sequence into

7.4. EXAMPLES 215

string sequence with adding if this nee concatenation operator, $CHAR func-
tion and additional double quotes by needs.

Example Example4.java demonstrates how to define in Java behaviour
of the principal device. To define this need to derive class minimonoj and
overload appropriate set of virtual functions for device - how to write string,
how to write one symbol wint given code, line feed and other actions, with
need to be used in Android application.

class minimonodev4 extends minimonoj

{

private TextView txtOut;

minimonodev4(String _CodePage,

TextView _txtOut)

throws java.lang.Exception

{

super(_CodePage);

txtOut = _txtOut;

};

// overload functions for device handlers

public int DevWriteStr(String str)

{

txtOut.append("Fired WriteStr(\"" +

str + "\") event\n");

return 0;

};

public int DevWriteChar(int _Char)

{

txtOut.append("Fired WriteChar(" +

_Char + ") event\n");

return 0;

};

public int DevWriteNL()

{

txtOut.append("Fired WriteNL event\n");

return 0;

};

...

};

216 CHAPTER 7. MINIMONO FOR ANDROID

Next this derived class with overloaded event handlers of device is used
in the application:

minimonodev4 MiniMono =

new minimonodev4(CodePage, txtOut);

Next this example executes commands in MUMPS with the WRITE com-
mand t the principal device:

MiniMono.Execute(

"write \"string\",*46,?12,!,#");

Example Example5.java demonstrates calls to indexed variables on short
example how to read and write global’s values. Before this calls example
generates initial values of this global:

MiniMono.Execute(

"f i=0:1:" + limit + " s ^var(i,i*i)=i*i*i");

To pass global and indices this example passes global name and array of
indices:

// read global values using direct call

String[] Indices = new String[2];

for(int i = 0; i < limit; i++)

{

Indices[0] = Integer.toString(i);

Indices[1] = Integer.toString(i * i);

txtOut.append(

MiniMono.ReadGlobal("var", Indices) + "\n");

}

To define name withou any indices functions pass empty array of indices:

MiniMono.KillGlobal("var", null);

7.4. EXAMPLES 217

This way is used by many other functions for local and global variables
- ReadLocal, WriteLocal, KillLocal, OrderLocal, and others, and for passing
separate function and subroutine arguments by UserFunc UserDo.

Object of array of strings in the Java language contains information about
length of array and defines order of elements. In the case of absence any
indices or arguments must be passed empty object null.

Example Example6.java demonstrates writing to the database source code
of routine

// kill routine before create new

String global_name = "ROUTINE";

String routine_name = "Example6";

String[] indices = new String[1];

indices[0] = routine_name;

MiniMono.KillGlobal(global_name, indices);

// create routine as a series of direct global sets

indices = new String[2];

indices[0] = routine_name;

String[] routine_text =

{

"Func(arg)",

" w \"arg = \",arg,!",

" n expr=$zd($h,8)",

" q expr"

};

for(int i = 0; i < routine_text.length; i++)

{

indices[1] = Integer.toString(i + 1);

MiniMono.WriteGlobal(

global_name, indices, routine_text[i]);

}

After this done, example executes routine compilation into bytecode

// compile routine

MiniMono.Read(

"$v(\"rou\",\"c\",\"" + routine_name + "\")");

218 CHAPTER 7. MINIMONO FOR ANDROID

And after this calls compiled routine, executes mumps code inside of
MiniMono virtual machine:

// evaluate expression

String func_result =

MiniMono.Read("$$Func^" +

routine_name + "(\"any data\")");

MUMPS code execution in this example demonstrates by output to the
screen while executes the $$Func function and also by output to textbox
result of this function.

Example Example7.java demonstrates error handling. JNI object for Min-
iMono on error occurence inside of virtual machine generates native Java
exception. This excetion catched by the application code and application
outputs on the screen special diagnostic message. This example uses two
error cases - division by zero and reading undefined local variable.

try

{

// execute division by zero

MiniMono.Execute("w 1/0");

}

catch(Throwable e)

{

// catch execution error and display last error

txtOut.append("Catched an error: " +

MiniMono.GetLastError() + "\n");

// revert value of $ec to an empty

// string for next code

MiniMono.Execute("s $ec=\"\"");

}

try

{

// read value of undefined variable

MiniMono.Read("abcdef");

}

catch(Throwable e)

{

// catch execution error and display last error

7.4. EXAMPLES 219

txtOut.append("Catched an error: " +

MiniMono.GetLastError() + "\n");

// revert value of $ec to an empty

// string for next code

MiniMono.Execute("s $ec=\"\"");

}

Here both exception handers except output text to the screen of diagnostic
message also clears value of the system variable $ECODE (assign to the
empty string). This can be used to clear error context of virtual machine
for next calls. This $ECODE variable clearing is unneed for proper use
of MiniMono, but some error handlers in MUMPS can analize full value of
$ECODE and can get redundant data about error which does not fully relate
to error in MUMPS. Value of function MiniMono.GetLastError is simply
value of the $ZERROR system variable, this value does not accumulates as
$ECODE and displays information only about last accured error. Developers
of application for Android with embedding MiniMono virtual machine should
define own error handling by own conventions and coding style.

	Administration and Set-Up
	MiniM service description
	Windows version
	Linux version

	File minim.ini description
	Server Section
	Telnet Section
	Process Section
	Journal Section
	Mnemonic Section
	Login Section

	File minimdb.ini description
	File minimti.ini description
	Registry records made by installer
	Backup and Restore
	Handling lack of disk space
	Telnet echo
	MiniM Collation Editor
	MiniM license key usage

	Devices
	Development with TCP device
	Development with CON device
	ATR mnemonic

	Technical Articles
	minim.exe command line switches
	ZDLL module development
	ZDEVICE module development
	User-defined z-functions
	User-defined z-commands
	Processes accounts
	Routine Editor Keystrokes
	MiniM Server Connect
	MiniM Server Connect, ActiveX
	Import / export API
	Global import
	Block global import
	Routine import
	Bytecode import
	Globals export
	Block global export
	Routine export
	Bytecode export

	Routine Change API

	CHUI Utilities
	%BACKUP
	%DBCLEAN
	%DBCRC
	%DBSIZE
	%GBI
	%GBO
	%GDIR
	%GI
	%GL
	%GO
	%GS
	%JOBTAB
	%JOURNAL
	%LOCKTAB
	%PERFMON
	%RCHANGE
	%RCOMPIL
	%RCOPY
	%RDELETE
	%RDIR
	%RESTART
	%RESTORE
	%RFIND
	%RFIRST
	%RI
	%RIMF
	%RL
	%RO
	%ROMF
	%RS
	%RSAIN
	%RSAOUT
	%SHUTDOWN

	Macro Preprocessor
	Macro Routines
	#define
	Macro Comment
	#else
	#endif
	#execute
	#if
	#ifdef
	#ifndef
	#include
	#undef
	Macro functions

	MiniMono
	MiniMono Architecture
	Data structures
	Direct calls
	Calls back
	Difference list
	MiniMono CHUI Tools
	MiniMono GUI Tools
	MiniMonoX
	MiniMono.VM properties
	MiniMono.VM functions
	MiniMono.VM events
	MiniMono.ServerString properties
	MiniMono.ServerString functions

	MiniMono for Android
	SDK Content
	Building Application
	Assets Synchronisation Utility
	Examples

